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Phase separation and coarsening in one-dimensional driven diffusive systems:
Local dynamics leading to long-range Hamiltonians

M. R. Evans,1 Y. Kafri,2 H. M. Koduvely,2 and D. Mukamel2
1Department of Physics and Astronomy, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JZ, United Kingdom

2Department of Physics of Complex Systems, The Weizmann Institute of Science, Rehovot 76100, Israel
~Received 24 February 1998!

A driven system of three species of particles diffusing on a ring is studied in detail. The dynamics islocal
and conserves the three densities. A simple argument suggesting that the model should phase separate and
break the translational symmetry is given. We show that for the special case where the three densities are equal
the model obeys detailed balance, and the steady-state distribution is governed by a Hamiltonian with asym-
metric long-range interactions. This provides an explicit demonstration of a simple mechanism for breaking of
ergodicity in one dimension. The steady state of finite-size systems is studied using a generalized matrix
product ansatz. The coarsening process leading to phase separation is studied numerically and in a mean-field
model. The system exhibits slow dynamics due to trapping in metastable states whose number is exponentially
large in the system size. The typical domain size is shown to grow logarithmically in time. Generalizations to
a larger number of species are discussed.@S1063-651X~98!08608-5#

PACS number~s!: 02.50.Ey, 05.20.2y, 64.75.1g
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I. INTRODUCTION

Collective phenomena in systems far from thermal eq
librium have been of considerable interest in recent years@1#.
Unlike systems in thermal equilibrium, where the Gibbs p
ture provides a theoretical framework within which su
phenomena can be studied, here no such framework ex
and one has to resort to studies of specific models in orde
gain some understanding of the phenomena involved.

One class of such models is driven diffusive syste
~DDS! @2,3#. Driven by an external field these systems do n
generically obey detailed balance, so that the steady state
nonvanishing currents. Theoretical studies of DDS have
vealed basic differences between systems in thermal equ
rium and systems far from thermal equilibrium. For examp
it is well known that one-dimensional~1D! systems in ther-
mal equilibrium with short-range interactions do not exhi
phenomena such as phase transitions, spontaneous sym
breaking~SSB!, and phase separation~except in the limit of
zero temperature or in the context of long-range interactio!
@4#. In contrast, some examples of noisy 1D DDS with loc
dynamics have been found to exhibit such phenomena.

One example of a noisy system which exhibits SSB in o
dimension is the asymmetric exclusion model of two types
charge studied in Refs.@5,6#. In this model, two types of
charge are biased to move in opposite directions on a
lattice with open ends. The charges interact via a hard-c
interaction, and are injected at one end of the lattice
ejected at the other end. This model is symmetric under
combined operations of charge conjugation and parity~PC
symmetry!. However, this symmetry is broken in the stea
state, where the currents of the two charges are not eq
The reason for symmetry breaking in this model lies to so
extent in the open boundaries. Other examples of mode
which there is SSB in one dimension have also been foun
the context of cellular automata@7# and surface growth@8,9#.
In the latter, SSB was due to the fact that one of the rates
PRE 581063-651X/98/58~3!/2764~15!/$15.00
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a local dynamical move in the models is zero. Once this z
rate changes to a nonzero rate, SSB disappears.

A closely related problem to spontaneous symme
breaking is that ofphase separationin 1D noisy systems.
This has been observed in driven diffusive models with
homogeneities, such as defect sites@10# or particles@11#. In
these models it has been found that macroscopic region
high densities are formed near the defect, much like a h
density of cars behind a slow car in a traffic jam@12,13#.
Here the phase separation is triggered by the defects. It
interest to study whether phase separation can occur in
noisy homogeneous systems such as on a ring geometry
no defects, whereall possible local transition rates which a
consistent with the symmetry and conservation laws of
model are nonvanishing. Recently, Lahiri and Ramaswa
introduced a lattice model in the context of sedimenting c
loidal crystals, where phase separation is found to take p
without any inhomogeneities@14#. In this model, there are
two rings coupled to each other, and particles on each
undergo an asymmetric exclusion process. The hopping
between sitesi and i 11 on each ring depends on the occ
pation at thei th site on the other ring. However, this mod
is studied mainly using Monte Carlo simulations, and
analytical results are available so far.

In a recent paper@15#, we introduced a simple three
species driven diffusive model exhibiting phase separa
and spontaneous breaking of the translational symmetry
ring. In the model, nearest-neighbor particles exchange w
given rates, and the numbers of each species are conse
under the dynamics. The rates of all local dynamical mo
that obey the conservation laws are nonzero. An argum
indicating that generically the system phase separates,
breaking the translational invariance, was given for the c
when none of the species of particle has a zero density. In
special case of equal numbers of particles of each type
was shown that the local dynamics obeys detailed bala
with respect to a long-range asymmetric~chiral! Hamil-
tonian. In this special case, using the Hamiltonian, we h
2764 © 1998 The American Physical Society
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found the steady state of the model exactly, and have b
able to prove the existence of phase separation analytic

The existence of a Hamiltonian for this special case is
interest in the light of speculation that nonequilibrium sy
tems exhibiting generic long-range correlations might be
scribed by effective Hamiltonians containing long-range
teractions@16,17#. Here we explicitly demonstrate that fo
the special case where the three densities are equal
model is exactly described by a long-range asymme
Hamiltonian. The model not only has long-range correlatio
but has generic long-rangeorder. The mechanism found in
this study suggests that systems with dynamical rules defi
completely locally anda priori without respect to any
Hamiltonian may have a steady state where the configura
space is sampled according to a measure that is intrinsic
global. The Hamiltonian also allows us to identify the anal
of a temperature in the microscopic dynamics as relate
the drive of the system; for zero drive, that is symmet
diffusion of the particles, the effective temperature is infini
and phase separation is lost.

We note that a related but distinct three-species mo
was recently introduced by Arndt, Heinzel, and Rittenbe
This model also exhibits phase separation@18#. Also, a
model with cyclic symmetry and nonconserving dynam
that exhibits coarsening has been studied@19#.

In the present work we analyze in detail theM53 species
model which was introduced in Ref.@15#, and then general
ize it to largerM . We provide a complete proof of phas
separation which follows from the exact calculation of t
partition sum in the thermodynamic limit. We also provid
numerical evidence of phase separation in the general
where the densities of the three particles are not equal.

In order to study the coarsening process, Monte Ca
simulations are performed. However, simulation of the m
croscopic model is hampered by slow dynamics, wh
makes it difficult to access the scaling regime. The sys
becomes trapped in metastable states comprising severa
mains of each type of particle. The number of metasta
states is exponentially large in the system size. The lifetim
of the metastable states increase exponentially with the
erage domain size as the fully phase separated state i
proached. Thus the model provides an example of slow
namics in a system without any quenched disorder@20#.

To ameliorate the difficulty of numerically studying suc
slow dynamics we employ a toy model, wherein it is t
domains that are updated rather than the individual partic
This allows the long-time scaling behavior of the doma
size to be investigated, and to confirm a logarithmic grow
of the average domain size with time. The toy model a
affords a mean-field solution for the long-time dynamic
behavior, that again confirms the scaling behavior.

Returning to the case of equal numbers of particles
different species, it is of interest to investigate the stea
state behavior in finite-size systems. We have found it c
venient to do this by employing a matrix product techniq
previously used to solve the steady state of asymmetric
clusion processes@21#. However, in the case of three speci
the simplest form of this technique@11,21,12# is applicable
only to a limited class of systems@22#. For the present mode
we generalize the matrix product to a product of rank 6 t
sors, and write the steady state by taking an appropriate
en
ly.
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traction. The partition sum and steady-state correlation fu
tions can be conveniently computed numerically using t
tensor product ansatz.

The paper is organized as follows: In Sec. II, we defi
the model introduced in Ref.@15#, and we present an argu
ment which indicates that the system should phase sepa
as long as none of the species of particles has zero densit
Sec. III, we study the special case where the model satis
detailed balance and explicitly write down the steady-st
weight for the three-species model. The existence of ph
separation in the model for any noninfinite temperature
proved analytically by calculating some bounds on the tw
point correlation functions. Section IV contains numeric
evidence of phase separation in the general case where
densities of the three species of particles are not equal.
toy model, which facilitates efficient Monte Carlo simula
tions, is used to study the dynamics of phase separation
mean-field analysis of this toy model is presented, the det
being left to Appendix A. In Sec. V, we present results f
finite systems obtained via the tensor product ansatz. U
these results we study finite-size scaling in the system
Sec. VI, we address phase separation in systems with m
than three species of particles and a proof of detailed bala
for special cases is given in Appendix B. We conclude
Sec. VII, and discuss some open questions.

II. DEFINITION OF THE MODEL

We start by defining a three-species model which exhib
phase separation in one dimension. Consider a o
dimensional, ringlike~periodic! lattice of lengthN where
each site is occupied by one of the three types of particlesA,
B, or C. The model evolves under a random sequential
date procedure which is defined as follows: at each time s
two neighboring sites are chosen randomly, and the parti
at these sites are exchanged according to the following ra

AB�
1

q

BA,

BC�
1

q

CB, ~1!

CA�
1

q

AC.

The particles thus diffuse asymmetrically around the rin
The dynamics conserves the number of particlesNA , NB ,
andNC of the three species.

Theq51 case is special. Here the diffusion is symmet
and every local exchange of particles takes place with
same rate as the reverse move. The system thus obey
tailed balance, reaching a steady state in which all mic
scopic configurations~compatible with the number of par
ticles NA , NB , andNC) are equally probable. This state
homogeneous, and no phase separation takes place. We
present a simple argument suggesting that forqÞ1 the
steady state of the system is not homogeneous in the the
dynamic limit. For simplicity, the caseq,1 is examined. As
a result of the bias in the exchange rates, anA particle pre-
fers to move to the left inside aB domain and to the right
inside aC domain. Similarly the motion ofB andC particles
in foreign domains is biased. Consider the dynamics star
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from a random initial configuration. The configuration
composed of a random sequence of domains ofA, B, andC
particles. Due to the bias a local configuration in which anA
domain is placed to the right of aB domain is unstable, and
the two domains exchange places on a relatively short t
scale which is linear in the domain size. Similarly,AC and
CB domains are also unstable. On the other hand,AB, BC,
andCA configurations are stable and long lived. Thus afte
relatively short time the system reaches a state of the
. . . AAABBCCAABBBCCC. . . , in which A, B, andC do-
mains are located to the right ofC, A, andB domains, re-
spectively. The evolution of this state takes place via a s
diffusion process in which, for example, the time scale for
A particle to cross an adjacentB domain isq2 l , wherel is
the size of theB domain. The system therefore coarsens a
the average domain size increases with time
ln t/uln qu @23#. Eventually the system phase separates i
three domains of the three species of the fo
A . . . AB . . . BC . . . C.

In a finite system the phase separated state may fur
evolve and become disordered due to fluctuations. Howe
the time scale for this to happen grows exponentially w
the system size. For example it would take a time of orde
q2min$NB ,NC% for the A domain in the totally phase separat
state to break up into smaller domains. Hence in the ther
dynamic limit, this time scale diverges and the phase se
rated state remains stable provided the density of each
cies is nonzero. Note that there are always small fluctuat
about a totally phase separated state. However, these flu
tions affect the densities only near the domain boundar
They result in a finite width for the domain walls. The fa
that any phase separated state is stable for a time expo
tially long in the system size amounts to a breaking of
translational symmetry.

Since the exchange rates are asymmetric, the system
nerically supports a particle current in the steady state.
see this, consider theA domain in the phase separated sta
An A particle near the . . .AB . . . boundary can traverse th
entire B domain to the right with an effective rate propo
tional to qNB. Once it crosses theB domain it will move
through theC domain with rate 12q. Similarly anA particle
near the . . .CA . . . boundary can traverse the entireC do-
main to the left with a rate proportional toqNC. Once the
domain is crossed, it moves through theB domain with a rate
12q. Hence the netA particle current is of the order o
qNB2qNC. Since this current is exponentially small in syste
size, it vanishes in the thermodynamic limit. For the case
NA5NB5NC , this argument suggests that the current
strictly zero for anyN. In Secs. III and V, we study this cas
in detail.

The arguments presented above suggesting phase se
tion for q,1 may be easily extended toq.1. In this case,
however, the phase separated state isBAC rather thanABC.
This may be seen by noting that the dynamical rules
invariant under the transformationq→1/q together with
A↔B.

III. SPECIAL CASE NA5NB5NC

In this section we show that the dynamics~1!, for the
special caseNA5NB5NC , satisfies detailed balance. Th
e
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corresponding Hamiltonian, which determines the stea
state distribution, is found to have long-range asymme
interactions. Using this Hamiltonian, we analytically calc
late the partition sum and bounds on the correlation functi
in the thermodynamic limit. These are then used to prove
existence of phase separation in the model. Later, in Sec
we study finite systems for this case and the approach to
thermodynamic limit.

A. Detailed balance

The general argument presented in Sec. II suggests
for the special caseNA5NB5NC , the steady state carries n
current for any system size. We demonstrate this explic
by showing that thelocal dynamicsof the model satisfies
detailed balance with respect to along-range asymmetric
HamiltonianH.

We define the occupation variablesAi , Bi , and Ci as
follows:

Ai5H 1 if site i is occupied by anA particle

0 otherwise.
~2!

The variablesBi and Ci are defined similarly. Clearly the
relation Ai1Bi1Ci51 is satisfied. A microscopic configu
ration is thus described by a set$Xi%5$Ai ,Bi ,Ci%. Using
these variables, we will show that the HamiltonianH and the
steady-state distributionWN corresponding to the dynamic
~1! for the caseNA5NB5NC5N/3 are given by

H~$Xi%!5 (
i 51

N21

(
j 5 i 11

N

@CiBj2CiAj1BiAj #, ~3!

WN~$Xi%!5ZN
21qH~$Xi %!. ~4!

Here ZN is the partition sum given by(qH($Xi %), where the
sum is over all configurations in whichNA5NB5NC . Note
that the HamiltonianH does not determine the dynamics
the system, it just governs the steady-state distribution
given in Eqs.~3! and~4!. Equation~4! suggests thatq serves
as a temperature variable withkT521/ln q. Thusq→1 is
the infinite-temperature limit. The Hamiltonian~3! is written
in a form which is not manifestly translationally invarian
However, careful examination reveals that when the relat
NA5NB5NC is taken into account, the Hamiltonian as give
by Eq. ~3! is indeed translationally invariant~see Appendix
B!. Therefore site 1 may be chosen arbitrarily. An express
for H which is manifestly translationally invariant will be
derived at the end of this section.

Note that

(
i 51

N21

(
j 5 i 11

N

~CiAj1AiCj !5~N/3!2, ~5!

since the left-hand side yields the number ofCA ~andAC)
pairs in the system. Using this relation the Hamiltonian m
also be written in a form where the cyclic symmetry is mo
apparent:
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H~$Xi%!5 (
i 51

N21

(
j 5 i 11

N

@CiBj1AiCj1BiAj #2~N/3!2.

~6!

The proof of Eqs.~3! and ~4! is straightforward. This is
done by considering a nearest-neighbor particle excha
and verifying that detailed balance is satisfied with respec
Eq. ~4!. We start by considering nearest-neighbor sites in
interior of the lattice, namely, pairs other than (1,N). For
example, consider the exchangeAB→BA taking place at
two adjacent sitesk and k11, wherekÞN. This exchange
results in the contribution of one moreBiAj term inH, and
hence the energy of the resulting configuration is higher
1. It is easy to see using Eq.~4! that qWN( . . . AB . . . )
5WN( . . . BA . . . ), asrequired by detailed balance. Simila
relations are easily derived for exchange ofBC and CA
pairs. Now consider an exchange taking place between
N and 1, sayCA→AC. According to Eq.~3!, this exchange
costs an energy of 2NB2NA2NC11. Therefore the ex-
change satisfies the detailed balance condit
qWN(A . . . C)5WN(C . . . A) only when 2NB5NA1NC .
Similarly, by considering the exchangesAB→BA and BC
→CB, one deduces that the detailed balance condition
satisfied for any exchange at sitesN and 1 as long asNA
5NB5NC . In Appendix B, we consider the most gener
nearest-neighbor exchange rates forM species and arbitrary
densities, and derive conditions~B7! for exchange rates
which satisfy detailed balance.

To writeH in a manifestly translationally invariant form
we defineHi 0

($Xi%) as the Hamiltonian in which sitei 0 is
the origin. That is,

Hi 0
~$Xi%!5 (

i 5 i 0

N1 i 022

(
j 5 i 11

N1 i 021

@CiBj2CiAj1BiAj #, ~7!

where the summation overi and j is moduloN. Summing
Eq. ~7! over all i 0 and dividing byN, one obtains

H~$Xi%!5(
i 51

N

(
k51

N21 S 12
k

ND ~CiBi 1k2CiAi 1k1BiAi 1k!

~8!

5(
i 51

N

(
k51

N21 S 12
k

ND
3~CiBi 1k1AiCi 1k1BiAi 1k!2~N/3!2, ~9!

where in the summation the value of the site index (i 1k) is
moduloN. In the Hamiltonian~9! the interaction is linear in
the distance between the particles, and thus is long ran
The distance is measured in a preferred direction from si
to sitei 1k. Moreover, it is asymmetric in the sense thatH is
not invariant under the parity operation. It is also related
chiral Hamiltonians@24#.

B. Ground states and metastable states

Before proceeding further to evaluate the partition s
and some correlation functions associated with the Ham
tonian~3!, let us make a few observations. The ground st
ge
to
e

y

es

n

is

l

d.

o

l-
e

of the Hamiltonian is given by the fully separated sta
A . . . AB . . . BC . . . C and its translationally related state
The degeneracy of the ground state is thusN, and its energy
is zero. A simple way of evaluating the energy of an arbitra
configuration is obtained by noting that nearest-neigh
~nn! exchangesAB→BA, BC→CB andCA→AC cost one
unit of energy each, while the reverse exchanges result in
energy gain of one unit. The energy of an arbitrary config
ration may thus be evaluated by starting with the grou
state and performing nn exchanges until the configuratio
reached, keeping track of the energy changes at each st
the way. The highest energy isN2/9, and it corresponds to
the totally phase separated configurati
A . . . AC . . . CB . . . B and itsN translations.

In considering the excited states of the Hamiltonian~3!,
we note that the model exhibits a set of metastable st
which correspond to local minima of the energy: any e
change of nn particles results in an increase of the energy
these states, noBA, CB, and AC nn pairs exist; only
AB,BC, andCA nn pairs may be found in addition toAA,
BB, and CC. Any metastable state is thus composed o
sequence of domains in whichA, B, andC domains follow
C, A, and B domains, respectively. Therefore each me
stable state has an equal number of domains,s, of each type
with s51, . . . ,N/3. The s51 case corresponds to th
ground state, while s5N/3 corresponds to the
ABCABC. . . ABC state, composed of a total ofN domains
each of length 1.~The total number of domains in ans state
is 3s.!

For calculating the free energy and some correlation fu
tions corresponding to the Hamiltonian~3!, we find it useful
first to derive some bounds for the numberN(s) of s states
and their energies. In the following such bounds are p
sented. They are then used, Sec. III C, to evaluate the
energy and correlation functions of the model.

To obtain a bound forN(s) we note that the number o
ways of dividingN/3A particles intos domains is (s21

N/321).
The number of ways of combinings divisions of each of the
three types of particles is clearly@(s21

N/321)#3. There are at
mostN ways of placing this string of domains on a lattice
obtain a metastable state~the number of ways need not b
equal toN since the string may possess some translatio
symmetry!. One therefore has

F S N/321

s21 D G3

<N~s!<NF S N/321

s21 D G3

. ~10!

Thus the total number of metastable states is exponentia
N.

We now consider the energy of the metastable states.
easy to convince oneself that, among alls states, none has
energy lower than the following configuration:

A . . . AB . . . BC . . . CABCABC. . . ABC, ~11!

where the 3(s21) rightmost domains are of size 1 and th
three leftmost domains are of size (N/32s11) each. The
energy of this state,Es satisfies the recursion relation

Es5Es211N/32s, ~12!
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with E150. To see this one notes that thes state may be
created from thes21 state by first moving aB particle from
the leftmostB domain across (N/32s) C particles to the
right and then moving anA particle from the leftmostA
domain to the right across the adjacentB and C domains.
The energy cost of these moves is (N/32s), yielding Eq.
~12!. The recursion relation~12!, together withE150, is
then readily solved to give

Es5~s21!
N

3
2

s~s21!

2
. ~13!

The energy of all metastables states is larger than o
equal toEs , as given by Eq.~13!. In Secs. III C and III D,
we use the bounds~10! and ~13! to calculate the partition
sum and some correlation functions corresponding to
Hamiltonian~3!.

C. Partition sum

In this section we prove that, in the largeN limit and for
all q,1, the partition sum is given by

ZN5N/@~q!`#3, ~14!

where

~q!`5 lim
n→`

~12q!~12q2!•••~12qn!. ~15!

The partition sum forq.1 may be obtained by replacingq
by 1/q in Eq. ~14!. Note that the partition sum is linear an
not exponential inN, meaning that the free energy is n
extensive. This is a result of the long-range interaction in
Hamiltonian, and the fact that the energy excitations are
calized near the domain boundaries, as will be shown in
following.

For q close to 1, (q)` has an essential singularity,

~q!`5e2~1/ln q![p2/61O~12q!] . ~16!

This suggests that the extensivity of the free energy could
restored in the double limitq→1 and N→`, with N lnq
finite. This scaling behavior is only suggestive since expr
sion ~14! may not be valid in this limit. Forq51, all con-
figurations withNA5NB5NC are equally probable, so tha
the partition sum is given byZN5(N/3

N )(N/3
2N/3), which goes

like 3N for largeN.
It is instructive to first present the proof of Eq.~14! for

small values ofq. This proof will then serve as the basis fo
the proof for anyq,1.

We start by noting that in calculating the partition su
~14!, configurations with energy larger thenaN (a.0) may
be neglected in the thermodynamic limit. For simplicity, w
first demonstrate this forq,(1/3)1/a, although later we show
it for any q,1. The contribution to the partition sum from
these energy states,Zm.aN , is given by

Zm.aN5 (
m5aN11

N2/9

D~m!qm, ~17!
e

e
-
e

e

s-

whereD(m) is the number of configurations of energym.
Clearly, the number of possible configurations in the syst
is bounded crudely from above by 3N. This bound implies

Zm.aN, (
m5aN11

N2/9

3Nqm. ~18!

Thus, for q,( 1
3 )1/a, the contribution to the partition sum

arising from energies larger thanaN is exponentially small
in N and may be neglected in the thermodynamic limit.

The calculation ofZN is thus reduced to calculating
truncated partition sum in which only energies up toaN are
summed over. To proceed we considera< 1

3 , and take into
account configurations with energy less thanN/321. This
simplifies the calculations considerably since all configu
tions with energym,N/321 may be decomposed intoN
disjoint sets of states, each corresponding to a unique gro
state~see Sec. III B for a discussion of ground states!. We
label the sets byl 51, . . . ,N, the position of the rightmostA
particle in theA domain of the ground state belonging to th
set~see Fig. 1 for an example of anl 55 ground state!. Each
state in a specific set can be obtained from the correspon
ground state by exchanging nearest neighbors, so that
energy always increases along the intermediate states.
that this is correct only if excitations of energy less th
N/321 are considered. This is because not all higher ene
states can be reached by uphill steps from a ground stat

Thus, using translational invariance, the partition sum c
be written as

ZN5NZN1e2O~N!, ~19!

whereZN is the truncated partition sum of one of theN sets
of configurations.

We proceed to calculateZN . This is done by considering
all the possible energy excitations with energy less th
N/321 above one ground state. Consider a specific dom
boundary, sayAB. Excitations of energym at this boundary
can be created by moving one or moreA particles into theB
domain~this is equivalent to movingB particles into theA
domain!. An A particle moving into theB domain is consid-
ered as a walker. The excitation energy increases line
with the distance the walker has moved. Thus, in this pict
an excitation of energym is created by 1< j <m walkers,
traveling a total distancem. The number of excitations o
energym is then given by the number of ways,P(m), of
partitioning an integerm into the sum of a sequence of non
increasing positive integers. Taking into account excitatio
at all three boundaries, an excitation of energym in the sys-
tem is created by three independent excitations of ene
m1 , m2, andm3 at the different domain boundaries such th
m11m21m35m. The number of excitations of this form i
just given byP(m1)P(m2)P(m3). ThusZN is given by

FIG. 1. Thel 55 ground state for anN521 system.
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ZN5 (
m50

N/322

qm (
mi50

m

P~m1!P~m2!P~m3!

3dm11m21m3 ,m . ~20!

Taking the thermodynamic limit, we obtain

lim
N→`

ZN5S (
m50

`

qmP~m!D 3

. ~21!

Using a well known result from number theory, attributed
Euler, for the generating function ofP(m) @25#,

(
m50

`

qmP~m!5
1

~q!`
, ~22!

and, using Eqs.~21! and ~19!, Eq. ~14! is obtained.

So far we have proved that forq<( 1
3 )3, Eq. ~14! is exact

in the thermodynamic limit. We now extend these results
anyq,1. First we have to show that the states ignored in

previous calculation forq<( 1
3 )3 may be ignored for allq

,1. To do this we calculate upper and lower bounds onZN ,
and show they converge for large enoughN.

For this we have to consider the entire energy spectrum
the Hamiltonian. Any configuration of the system which
neither a ground state nor a metastable state can be obt
from at least one ground state (s51) or a metastable stat
(s.1) as follows: starting from thiss state, exchange nea
th
oi
o

r
e

of

ed

est neighbors such that the energy always increases alon
path until the configuration is reached. In what follows it
demonstrated that none of the configurations which can
obtained froms.1 states, by the above procedure of partic
exchange, contributes to the partition sum in the thermo
namic limit.

An upper bound on the partition sum may be calculated
follows: using the same steps of derivation used for comp
ing ZN , it is straightforward to show that the contribution
the partition sum from ans state and associated configur
tions is at most q(s21)N/32s(s21)/2@(q)`#23s. The prefactor
q(s21)N/32s(s21)/2 arises from the minimum energy~13! of
this metastable state. Therefore, by considering the contr
tions from all thes states, and using Eq.~10!, the following
bound is found:

ZN,N/@~q!`#31(
s52

N/3

NS N/321
s21 D

3q~s21!N/32s~s21!/2@~q`!#23s. ~23!

The second term on the right-hand side represents the
tribution from excitations around the metastable states.
placing q(s21)N/32s(s21)/2 by an upper boundq(s21)N/6, one
can sum the binomial series. The resulting expression is
ponentially small inN for any q,1.

A lower bound onZN can be calculated by neglectin
configurations with energy greater thanN/321 as follows:
ZN.N (
m50

N/322

qm (
mi50

m

P~m1!P~m2!P~m3!dm11m21m3 ,m ~24!

5N/@~q!`#32N (
m5N/321

`

qm (
mi50

m

P~m1!P~m2!P~m3!dm11m21m3 ,m ~25!

.N/@~q!`#32N (
m5N/321

`

qm
„mP~m!…3. ~26!
-

The asymptotic behavior ofP(m) @25# is given by

P~m!.
1

4mA3
exp„p~2/3!1/2 m1/2

…. ~27!

Thus, for largeN the lower bound~26! converges to Eq.
~14!, as does the upper bound~23!.

D. Correlation functions

Whether or not a system has long-range order in
steady state can be found by studying the decay of two-p
density correlation functions. For example the probability
finding anA particle at sitei and aB particle at sitej is,
e
nt
f

^AiBj&5
1

ZN
(
$Xk%

AiBj qH~$Xk%!, ~28!

where the summation is over all configurations$Xk% in
which NA5NB5NC . Due to symmetry, many of the corre
lation functions will be the same, for examplêAiAj&
5^BiBj&5^CiCj&. A sufficient condition for the existence
of phase separation is

lim
r→`

lim
N→`

~^A1Ar&2^A1&^Ar&!.0. ~29!

Since ^Ai&5 1
3 , we wish to show that

limr→` limN→`^A1Ar&. 1
9 . In fact we will show below that,

for any givenr and for sufficiently largeN,
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^A1Ar&51/32O~r /N!. ~30!

This result not only demonstrates that there is phase sep
tion, but also that each of the domains is pure. That is,
probability of finding a particle a large distance inside a d
main of particles of another type is vanishingly small in t
thermodynamic limit.

To prove Eq. ~30!, we use the relation̂ A1Ar&5 1
3

2^A1Br&2^A1Cr&, and show that the correlation functio
^A1Br& is of O(r /N) and ^A1Cr& is of O(1/N). Here we
show only the proof for̂A1Br&, since the proof of̂A1Cr& is
similar. We also restrict ourselves tor<N/3, which is suffi-
cient for proving Eq.~30!.

We have already seen that the contribution to the parti
sum from the metastable states, and excitations above t
are exponentially small in the system size and hence ma
neglected. Therefore, for calculating the correlation funct
it is sufficient to consider theN ground states and excitation
above them, which may be reached by moves which o
increase the energy. As we have seen, these states forN
disjoint sets of states, each associated with one of the gro
states. Using this we now show that^A1Br&5O(r /N). For
this purpose we use a restricted partition sumZs , which is
defined as the partition sumZN calculated with the constrain
that one of the walkers, say of typeA, has traveled at leas
distances. It is given asN→` by

Zs5 (
m50

`

qm (
mi50

m

Ps~m1!P~m2!P~m3!dm11m21m3 ,m .

~31!

HerePs(m) is the number of partitions of integerm, with the
constraint that in all the partitions the integers occurs at least
once. Noting thatPs(m)5P(m2s) it is easy to show that

Zs5qsZ, ~32!

whereZ[ limN→`ZN .
We now proceed to derive a bound for^A1Br&. Recall

that l is the position of the rightmostA particle in theA
domain in the ground state labeledl . If we define^A1Br& l as
the correlation function calculated within the set of sta
labeledl , we can write

^A1Br&5
1

N (
l 51

N

^A1Br& l , ~33!

up to exponentially small corrections in the system size.
convenience we break the summation overl into four sums
according to the values ofA1 and Br in the ground state
These four parts correspond to~i! ground states whereA1
51, Br51, ~ii ! ground states whereA151 andBr50, ~iii !
ground states whereA150, Br51, and ~iv! ground states
whereA150 andBr50. We now consider each of these
detail, and give an upper bound for^A1Br& l in each case.

~i! Ground states where A151, Br51: In this case the
site 1 is inside theA domain and siter is inside theB
domain. Since we consider onlyr<N/3, these states corre
spond to thel ground states with 1< l ,r . Using the fact that
^A1Br& l<1, one finds
ra-
e
-

n
m,
be
n

ly

nd

s

r

(
l 51

r 21

^A1Br& l<r 21. ~34!

~ii ! Ground states where A151, Br50: in principle, siter
might be either inside theA domain or inside theC domain.
However, since site 1 is in theA domain and we conside
only r ,N/3, site r must be in theA domain. The ground
statesl for which this takes place satisfyr< l<N/3. Clearly,
only the excited states whereBr51 contribute to^A1Br& l .
In such excited states one of theB walkers travels at least a
distancel 2r 11 into theA domain~see Fig. 2!. For this case
we can give the upper bound̂A1Br& l<(s5 l 2r 11

` Zs /Z.
From Eq.~32!, Zs /Z5qs. Hence,

(
l 5r

N/3

^A1Br& l<(
l 5r

N/3

(
s5 l 2r 11

`

qs. ~35!

~iii ! Ground states where A150, Br51: again, sincer
<N/3, site 1 has to be inside theB domain. The values ofl
satisfying this condition are in the range 2N/31r< l<N. In
this case only excited states in which one of theA walkers
travels at least a distanceN2 l 11 into theB domain will
contribute to^A1Br& l . Hence we can use the upper bou
^A1Br& l<(s5N2 l 11

` Zs /Z, in this case. Therefore,

(
l 52N/31r

N

^A1Br& l< (
l 52N/31r

N

(
s5N2 l 11

`

qs. ~36!

~iv! Ground states where A150, Br50: there are three
possibilities here.~a! site 1 is inside theC domain and siter
is inside theA domain (N/3, l ,N/31r ), ~b! both the sites 1
and r are inside theC domain (r 1N/3< l<2N/3), and~c!
site 1 inside theB domain and siter inside theC domain
(2N/3, l ,2N/31r ). Since all these are consistent withr
<N/3, all these cases can occur. It can be shown that
minimal energy needed to create an excited state whereA1
51 andBr51 is ea52l 2r 2N/321 for case~a!, eb5N/3
1r 23 for case~b!, and ec55N/322l 1r 21 for case~c!.
The resulting expression for the bound is

(
l 5N/311

2N/31r 21

^A1Br& l< (
l 5N/311

N/31r 21

(
s5ea

`

qs1 (
l 5N/31r

2N/3

(
s5eb

`

qs

1 (
l 52N/311

2N/31r 21

(
s5ec

`

qs. ~37!

The summations on the right-hand sides of Eqs.~35!–~37!
can be carried out explicitly. To leading order, the summ
tions givesq/(12q)2 for each of Eqs.~35! and ~36!. The
summation on the right-hand sides of Eq.~37! vanishes ex-

FIG. 2. A ground state whereA151 andBr50. In order to have
Br51, it is necessary for aB particle to travel a distance ofl 2r
11 into theA domain.
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ponentially in the thermodynamic limit. Using Eqs.~33!–
~36!, we obtain the following expression for the upper bou
on ^A1Br&:

^A1Br&<
1

NF r 211
2q

~12q!2
1e2O~N!G . ~38!

Therefore ^A1Br&5O(r /N). Similarly one can show tha
^A1Cr&5O(1/N). Thus for all q,1, ^A1Ar&5 1

3 2O(r /N),
proving the existence of a complete phase separation.

IV. COARSENING

A. Monte Carlo simulations

We have demonstrated that in the thermodynamic li
the system is phase separated whenNA5NB5NC . The gen-
eral arguments given in Sec. II indicate that when the glo
densities of the three species are nonvanishing andqÞ1, the
system phase separates, even when the three densities a
equal. The argument suggests that the typical timet f , in
which the system leaves a specific phase separated con
ration increases exponentially with the system size. Thu
phase separated state is stable in the thermodynamic lim
the following we use Monte Carlo simulations to supp
these arguments.

The time t f can be measured using the autocorrelat
function defined as

c~ t !5
1

N (
i 51

N

„^Ai~0!Ai~ t !&1^Bi~0!Bi~ t !&1^Ci~0!Ci~ t !&…,

~39!

whereAi(t), Bi(t), andCi(t) are the values of the occupa
tion variablesAi , Bi , andCi at timet, and^•••& denotes an
average over histories of evolution. Clearly,c(0)51, while
c(`)5(NA /N)21(NB /N)21(NC /N)2, the value of the au-
tocorrelation between two independent configurations. T
t f may be defined as the decay time ofc(t) to c(`) when at
t50 the system is totally phase separated.

We have measured the time scalet f using Monte Carlo
simulations for different system sizes forNA5NB5NC and
for NAÞNBÞNC for severalq values. An example of such
measurements forNA /N50.4, NB /N50.35 and NC /N
50.25 is presented in Fig. 3. In the figure,t f is plotted versus
system size for several values ofq. This agrees with the
exponential growth oft f with the system size suggested b
the simple argument of Sec. II. The same behavior seem
occur for all qÞ1, and for different choices ofNA /N,
NB /N, and NC /N. Therefore, we conclude that the Mon
Carlo simulations support the claim that for anyqÞ1 the
system will phase separate into three domains in the ther
dynamic limit, even when the number of particles of ea
species is not equal. In the thermodynamic limit the trans
tional symmetry is spontaneously broken in this state. Du
the slow dynamics, which reflects escape from metasta
states, Monte Carlo simulations could be performed only
a relatively small system size (N'100). In order to study the
coarsening process for larger systems we employ, in the
lowing, a toy model which mimics the dynamics of th
it

al

not

gu-
a
In
t

n

s

to

o-
h
-

to
le
r

l-

model~1!. The toy model can be conveniently simulated f
systems larger by about two orders of magnitude.

B. Toy model

We now construct a simple toy model which captures
essential physics of the coarsening process in the mod
large times, and enables us to simulate systems much la
than those accessible by Monte Carlo simulation. Using
toy model we examine another characteristic scale of
system, namely, the average domain size^ l & as a function of
time, t. The results support the simple argument leading t
domain growth law^ l &; lnt/ulnqu. A mean-field version of
the toy model is then solved analytically.

We consider a system at timet such that the averag
domain size,̂ l &, is much larger than the domain wall width
At these time scales, the domain walls can be taken as sh
and we may consider only events which modify the size
domains. This means that the dynamics of the system ca
approximated by considering only the movement of partic
between neighboring domains of the same species. U
this we represent a configuration by a sequence of dom
of the formA1B1C1A2B2C2 . . . AKBKCK , where thei th do-
main of, sayA, particles is represented byA i , as shown in
Fig. 4. The exchange of particles between domains, sayA i
and A i 11, takes place at a rate dictated by the size of
domainsBi andCi which separate them. Since intermedia
configurations of the form . . .A i 21BiA iCi . . . rearrange on
short time scales compared with the evolution between m
stable states, only metastable configurations are consid
in the toy model. Events in which a domain splits into tw
are ignored.

Using these ideas we define the dynamics of the
model as follows: at each time step two neighboring doma

FIG. 3. The decay timet f measured for different system size
for severalq values. HereNA /N50.4, NB /N50.35, andNC /N
50.25. The data are averaged over a 100 runs.t f is measured in
Monte Carlo steps.

FIG. 4. A configuration of the toy model represented by a
quence of domains.
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of the same species of particle are chosen randomly, saA i
and A i 11. Let ai , bi , andci denote the lengths of the do
mainsA i , Bi , and Ci , respectively. The length of the do
main chosen is then modified by carrying out one of
following processes:

~1! ai→ai21

ai 11→ai 1111J with rate qbi,

~40!

~2! ai→ai11

ai 11→ai 1121J with rate qci,

where, as before,q,1 is considered.
If ai becomes zero, then delete the domainA i from the

list of domains, and mergeBi and Ci with Bi 21 and Ci 21,
respectively. Then, forj . i , shift the indices of the domain
from j to j 21, so thatK becomesK21. The rules for
updatingB and C domains can be obtained from Eq.~40!
using cyclic permutations and a slight change of indices.

Note that the toy model is only relevant to the descript
of the coarsening dynamics. This is because here, once
system is left with three domains, it remains in that state

To simulate the toy model efficiently, an algorithm su
able for rare event dynamics must be used due to the s
rate of events@26#. We use an algorithm which is performe
by repeating the following steps.

~1! List all possible events$n% and assign to them rate
$r n% according to the rules of the model.

~2! Choose an eventm with probability r m /R, whereR
5(nr n .

~3! Advance time byt→t1t, wheret51/r m .
The algorithm would be equivalent to a usual Mon

Carlo simulation, where one time step is equivalent to o
Monte Carlo sweep, if, in step~3!, t would be drawn from a
Poisson distributionR exp@2Rt#. However, here we make
an approximation by using the deterministic choicet
51/r m .

We have simulated the dynamics for lattices of size up
9000. For simplicity we consider the caseNA5NB5NC . An
example of a typical behavior of the average domain size
a function oft is shown in Fig. 5. One can see that after
initial transient growth time the data fit very well with a ln(t)
behavior. Simulations for differentq values indicate that,

^ l &5a ln t/u ln qu, ~41!

with a.2.6. The toy model enables one to verify the scal
behavior ~41! and estimate the constanta. This would be
very difficult to do by simulation of the full model~1!.

C. Mean-field solution of the toy model

Here we present the solution of a mean-field version
the toy model based on ideas presented by Rutenberg
Bray @27# and Bray, Derrida, and Godre`che@28# in the study
of the ordering dynamics in a one-dimensional scalar mo
To construct the mean-field model we note that since
steps in the toy model which involve exchange of partic
between domains occur at a rate exponentially small in
e

he

all

e

o

s

f
nd

l.
ll
s
e

size of domains, one can consider a model where dynam
occurs only in the vicinity of the smallest domains. Th
mean-field approximation assumes that different domains
uncorrelated, and does not distinguish between domain
different species. The second assumption relaxes the con
vation of particles of each species. Thus, in contrast to
systems studied in Refs.@27# and@28#, we do not expect the
mean field to become exact in the scaling limit. We defi
the mean-field model as follows.

~1! Pick one of the smallest domainsDmin .
~2! Pick two domainsD1 and D2 randomly, and treat

them as the neighbors ofDmin .
~3! Pick three more domains randomly, sayD3 , D4, and

D5.
~4! Eliminate Dmin , D2, and D3 from the system, and

change the length of the domainsD3 , D4, andD5 by

l D3
→ l D3

1 l D2
,

l D4
→ l D4

1 l D1
, ~42!

l D5
→ l D5

1 l Dmin
.

Steps~1!–~4! are performed simultaneously for all of th
smallest domains in the system. Herel Di

is the length of

domaini , andl min is the length of the smallest domain. Ste
~1!–~3! choose the smallest domainDmin and its nearest
neighbors~see Fig. 6!. Step~4! uses the fact that the dynam
ics occur in the model only in the vicinity of the smalle
domain, and eliminates the three domainsDmin , D1, andD2,
joining them appropriately with the other domainsD3, D4,
and D5. Note that this mean-field dynamics does not ta

FIG. 5. Monte Carlo simulation results for the toy model for t
average domain size,^ l &, vs timet, for N59000 andq50.8. Time
is measured in Monte Carlo steps. The data are averaged over
runs.

FIG. 6. A configuration in the mean-field model after steps~1!–
~3! have been performed for one of the smallest domains.
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into account the time taken for these events to happen.
will be done later when we derive the growth law of d
mains.

To solve the mean-field model we follow the method us
in Refs.@27,28#. Let nl(t) be the number of domains of siz
l , irrespective of the type of particle it consists of. Letl min(t)
be the length of the smallest domain, andM (t)53K(t) be
the total number of domains at timet. We will assume that
nl(t) has the following scaling form in the large-time limi

nl5
M

l min
f S l

l min
D . ~43!

A solution of the model given in Appendix A yieldŝl &
5^x& l min , where^x& is given by

^x&5
3eg/3

E
0

`

dx x21/3e2xe2I ~x!/3

. ~44!

The growth law forl min(t) can be derived following Ref
@27#: after the elimination of the smallest domain,l min in-
creases by 1. This happens at a rateql min/^ l &, namely, the
inverse time required by a typical domain to cross a dista
l min ~thus causing the annihilation ofDmin). Using ^ l &
5^x& l min , we write

] l min

]t
5

ql min

^x& l min
. ~45!

From this, one can obtain the scaling form of the avera
domain size,

^ l &q2^ l &/^x&

u ln~q!u
't. ~46!

Note that in this equation̂x& does not depend, accordin
to the mean-field solution, on eithert or q. One can see from
Eq. ~46! that, for largel , ^ l &'^x& ln t/uln qu, which was con-
firmed by the simulations of the toy model wherea5^x&
@see Eq.~41!#. A numerical evaluation of Eq.~44! yields
^x&.3.72, as compared witha52.6 obtained from the toy
model simulations.

V. EXACT RESULTS FOR FINITE SYSTEMS

In Sec. III, the partition functionZN and correlation func-
tion ^A1Ar& for finite r have been calculated in the therm
dynamic limit. It is also of interest to obtain results for fini
systems for the study of finite-size effects and the appro
to the thermodynamic limit. Recently a matrix ansatz meth
has been introduced to study one-dimensional nonequ
rium systems@21#. It has been shown that in certain thre
species models the steady-state weight and correlation f
tions can be represented as a product of matr
@11,5,12,22#. In the ansatz a specific matrix is associat
with each type of particle. Then the unnormalized probabi
of a certain configuration is obtained from a matrix produ
The matrices corresponding to the different species of p
ticles satisfy an algebra derived from the dynamics of
model. A scalar, i.e., the weight of a configuration or so
is

d

e

e

h
d
b-

c-
s

d
y
.
r-
e
e

correlation function, is usually obtained by performing
trace over the product of matrices, or by multiplying bo
sides of the product of matrices by vectors. Generalizing
method to replace matrices by tensors@29#, we have been
able to obtain recursion relations for the partition functi
and correlation function for finite systems for the spec
caseNA5NB5NC . The recursion relations are then used
obtain the partition function and correlation function^A1Ar&
for any r in small systems. The results are used to study
scaling of the correlation function near the critical pointq
51 ~infinite temperature!, where the typical domain wal
width diverges.

A. Tensor product ansatz

It is convenient to consider the unnormalized weigh
f N($Xi%), defined through

WN~$Xi%!5ZN
21f N~$Xi%!, ~47!

whereWN($Xi%) is the probability of being in configuration
$Xi%. The partition sumZN is given by

ZN5(
$Xi %

f N~$Xi%!, ~48!

where the sum is over all configurations withNA5NB
5NC .

We generalize the matrix ansatz and construct the ste
state weight,f N($Xi%), from a product of tensors, each co
responding to a particle located in a specific place on
lattice. The contraction of the tensors yields a tensor whic
then contracted with ‘‘left’’ and ‘‘right’’ tensors to generat
a scalar. The three tensors which represent the different
of particle are defined as rank 6 tensors through the follo
ing tensor products of square matrices:

A5E^ D^ 1,

B51^ E^ D, ~49!

C5D^ 1^ E.

Here1 is a unit matrix. The matricesD andE will be chosen
in what follows to satisfy a commutation relation which w
be dictated by the detailed balance condition.

To define f N($Xi%) we introduce the following notation
the contraction of two rank 6 tensorsO5O1^ O2^ O3 and
P5P1^ P2^ P3, whereOi and Pi are square matrices, ac
cording to the ruleO1P1^ O2P2^ O3P3 is denoted byOP.
The contraction of a rank 6 tensorO with a left rank 3 tensor
^Ku5^K1u ^ ^K2u ^ ^K3u, where^Ki u are transposed vectors
and a right rank 3 tensor,uM&5uM1& ^ uM2& ^ uM3&, where
uMi& are vectors, defined through

^K1uO1uM1&^K2uO2uM2&^K3uO3uM3&

is denoted bŷKuOuM&.
Using these definitions, we write the steady-state wei

of the system as
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f N~$Xi%!5^Uu)
i 51

N

@AiA1BiB1CiC#uV&, ~50!

whereAi , Bi , andCi are the occupation variables defined
Eq. ~2!. The expression states that a tensorA is present at
place i in the tensor product if sitei is occupied by anA
particle, a tensorB is present if sitei is occupied by aB
particle, and a tensorC is present if sitei is occupied by aC
particle. The action of the tensor product on^Uu and uV&
produces the scalarf N($Xi%) when^Uu anduV& are chosen to
pick out a nonzero element of the tensor product~see below!.

It is straightforward to show using detailed balance tha
necessary condition for Eq.~50! to be the steady-state weigh
is that the following commutation relations are satisfied
tweenA, B, andC:

qAB5BA,
qBC5CB, ~51!
qCA5AC.

It was shown in Ref.@30# that the algebraic rules~51! also
give the steady state of the same model with reflect
boundaries~where the current is automatically zero! for ar-
bitrary densities. In that work the relation to quantum plan
@31# was touched upon. The algebraic rules~51! follow im-
mediately from detailed balance and do not rely on the fo
~49!. Rather, Eq.~49! provides an easy way to satisfy E
~51!, as can be verified, provided thatqDE5ED. This de-
formed commutator is of relevance in other stochastic s
tems @32,33#. A representation of matricesD and E which
satisfies this commutation relation can be obtained as
lows: let $^nu% denote a basis set (n50,1, . . . ,N/3) forming
a vector space. In this basis we choose the matrices so

^nuE5^nuqn for anyn,

^nuD5^n21u for n>1, ~52!

while, for n50, ^0uD50. An explicit form for E and D is
given by the following (N/311)3(N/311) square matri-
ces:

E5 (
n50

N/3

qnun&^nu, D5 (
n51

N/3

un&^n21u. ~53!

To obtainf N($Xi%), ^Uu anduV& have to be specified. Thi
should obviously be done so thatf N($Xi%) is nonzero if the
ansatz is to give a nontrivial result. We consider a gene
tensor product which corresponds to some configuration.
product hasN/3 tensors of each typeA, B, andC, which
results in a tensor product of three matrix products. Us
Eq. ~49!, it can be seen that each matrix product containsN/3
matrices of each typeD, E, and1. SinceE and1 are diago-
nal, while D acts to its left as a lowering matrix@see Eq.
~52!#, choosing ^Uu5^N/3u ^ ^N/3u ^ ^N/3u[^N/3,N/3,N/3u,
and uV&5u0,0,0& will give a nonzerof N($Xi%). This makes
clear that the minimal size choice for the vector space
N/311. Under this choice it is easy to see that in the grou
states one hasf N5qN2/9 which corresponds to a ground sta
energyN2/9. However, the choice of̂Uu and ^Vu is deter-
mined only up to some multiplicative factors. These fact
may be used to shift the ground state energy of the sys
a
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g
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d
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m.

For example choosing ^Uu as before with uV&
5q2N2/9u0,0,0& will shift the ground state energy to 0. In th
following the factors are taken to be 1.

Finally we would like to remark that usually when usin
the matrix ansatz for systems with periodic boundary con
tions, it is often convenient to use a trace of the matrix pro
uct @11,22#. In this case this is not possible, since the trace
our tensor product is always zero.

B. Partition sum

In terms of the ansatz~50!, the partition functionZN is
given by

ZN5^N/3,N/3,N/3u~A1B1C!Nu0,0,0&. ~54!

Note that we are using the canonical ensemble, since
tensor products with unequal number of particles do not c
tribute to ZN . This is easily seen since in these cases th
are always more thanN/3D matrices acting on one of th
vectors^N/3u.

To obtain the partition function, we derive a recursio
relation for

Gi , j ,k
l [^ i , j ,ku~A1B1C! l u0,0,0&. ~55!

One can see thatGN/3,N/3,N/3
N 5ZN . RewritingGi , j ,k

l as

Gi , j ,k
l 5^ i , j ,kuA~A1B1C! l 21u0,0,0&

1^ i , j ,kuB~A1B1C! l 21u0,0,0&

1^ i , j ,kuC~A1B1C! l 21u0,0,0&, ~56!

and using relations~49! and ~52!, the following recursion
relation can be derived:

Gi , j ,k
l 5qiGi , j 21,k

l 21 1qjGi , j ,k21
l 21 1qkGi 21,j ,k

l 21 . ~57!

The boundary conditions for this recursion relation is giv
by the no particle partition functionGi , j ,k

0 51 if i 5 j 5k50,
and is zero otherwise.

For small systems~up to N521) for which the recursion
relation is tractable analytically onMATHEMATICA , we ob-
tained the partition functionZN5GN/3,N/3,N/3

N as a polynomial
in q. As expected, the firstN/322 terms of the polynomial
match the firstN/322 terms of the expansion of Eq.~14! up
to a factor ofqN2/9 due to the energy shift in the ground stat
For largerN, we solve the recursion relation numerically.

We note that Eq.~57! could have been derived directl
from the definition of the partition function without recours
to the tensor ansatz. However, we believe the utility of
ansatz lies in the ease with which correlation functions c
be manipulated and relations such as that of Sec. V C
rived.

C. Correlation functions

The correlation function̂A1Ar& is given in terms of the
ansatz by
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^A1Ar&5
^N/3, N/3, N/3uA~A1B1C!r 22A~A1B1C!N2r u0,0,0&

ZN
. ~58!

Using relations~49!, ~51!, and~52!, we obtain

^A1Ar&5q2N/3 ^N/3, N/3 22,N/3u~A1qB1C/q!r 22~A1B1C!N2r u0,0,0&
ZN

~59!

5q2N/3
U~r !N/3,N/322,N/3

r

ZN
, ~60!
ob
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where we define the objectU(r ) i , j ,k
s through,

U~r ! i , j ,k
s 5^ i , j ,ku~A1qB1C/q!s22

3~A1B1C!N2r u0,0,0&. ~61!

A recursion relation forU(r ) i , j ,k
s can be obtained, similarly

to the recursion relation for the partition function~57!. Using
Eqs.~49! and ~52! gives

U~r ! i , j ,k
s 5qiU~r ! i , j 21,k

s21 1qj 11U~r ! i , j ,k21
s21

1qk21U~r ! i 21,j ,k
s21 . ~62!

The boundary conditions for the recursion relation are
tained by noting that U(r ) i , j ,k

2 5^ i , j ,ku(A1B
1C)N2r u0,0,0&, i.e., U(r ) i , j ,k

2 5Gi , j ,k
N2r . Using the same

methods, one can obtain recursion relations for all other c
relation functions.

The recursion relations are solved numerically for fin
systems. This is done by first solving numerically forGi , j ,k

N2r ,
and then using the result as boundary conditions for the
cursion relation~62!. Owing to Eq.~60! we are ultimately
interested inU(r )N/3,N/322,N/3

r .
Using these recursion relations we have calculated

correlation function̂ A1Ar& as a function of the distancer
for a system of sizeN584 and several values ofq ~Fig. 7!.
For smallq this system size is large enough that the cor
lation function is close to the asymptotic thermodynam
limit, and phase separation is clearly seen. This is less
dent for largerq, and one has to go to largerN to see phase
separation.

We also give the correlation function^A1AN/2&, which is a
measure of the phase separation in the system, for var
system sizes. When̂A1AN/2& is close to zero the system
phase separated. In the disordered case,q51, the value of
the correlation function is (N23)/9(N21), approaching1

9

in the thermodynamic limit. The results are shown in t
inset of Fig. 8; one can see that the system is phase sepa
for small values ofq, while for q close to 1 the system i
disordered. The range ofq values for which the system i
phase separated increases as the system size increase
natural scaling variable near the critical pointq51 is N lnq,
and the ratio between the domain sizeN/3 and the domain
wall width * lqldl/*qldl51/u ln qu. In Fig. 8, the correlation
function is plotted as a function of the scaling variable. O
can see that the data collapse improves as the system
-

r-

e-

e
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i-

us

ted

The

e
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increases. This scaling variable was also suggested by
form of the partition function~14! in Sec. III C.

VI. GENERALIZATION TO M SPECIES

In the following we discuss possible generalization of t
model toM>3 species. To demonstrate how this might
done, we first discuss the caseM54. We then comment
briefly on M.4.

We now define a four-species model and argue tha
phase separates. Consider a ring where each site is occu
by either anA, B, C, or D particle. The model evolves ac
cording to the following procedure: at each time step, t
nearest neighbors are chosen randomly and exchanged
cording to the rates

AB�
1

q

BA,

BC�
1

q

CB,

CD�
1

q

DC,

~63!

DA�
1

q

AD,

AC�
1

q

CA,

DB�
1

q

BD.

As before, the model conserves the number of particles
each species. Note that several other generalizations o
model to four species are possible. However, for simplic
we discuss only the model defined by Eq.~63! with q,1.

We now argue that the system phase separates into a
figuration of the formABCD ~where each letter now indi
cates a domain!, as long as the densities of particles of ea
species are nonzero. Note that in the modelAB, BC, CD,
DA, AC, and DB boundaries are stable, while rever
boundariesBA, CB, DC, AD, CA, andBD are unstable. As
in the case of the three-species model, the system, sta
from a random initial condition, evolves on a short-tim
scale~i.e., which is not determined by the size of the syste!
into a metastable configuration where only stable doma
are present. This configuration then slowly coarsens by s
diffusion of particles through neighboring domains. The s
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tem will finally reach the most stable state where the num
of domains is minimal. One can easily check that this c
figuration is given byABCD. Note that the system ma
exhibit other metastable states. For example, a state c
posed ofACDABCD is also stable under the choice of rat
~63!. However, since this state is composed of more doma
than the four-domain state, some of the domains are ne
sarily smaller. According to the argument presented in S
II, the relaxation time of this sequence~proportional toq2m

wherem is the typical domain size! is much shorter than the
relaxation time of the four-domain state. Therefore, the fo
domain state is more stable so that the system will fina
evolve into it.

In consideringM.4 models, one finds that for som
choices of transition rates several states with a minim
number of domains may become metastable. For exam
for M55 it is possible to choose transition rates for whi
both ABCDE and ACEBD are locally stable. The relative
stability ~and thus the resulting phase separated state! may be
found by determining the relaxation time of these states
ing simple considerations such as those presented in Se

As is the case ofM53, detailed balance is found to b
satisfied for certain densities and transition rates forM.3.
The condition for this is derived in Appendix B. In this ca
the relative stability of metastable states could be determ
by comparing free energies.

VII. CONCLUSION

In this paper a model of three species of particles diff
ing on a ring previously introduced in Ref.@15# has been
studied. The model is governed by local dynamics in wh
all moves compatible with the conservation of the three d
sities are allowed. We argue that phase separation sh
occur as long as all densities are nonzero. In the special
of equal densities we find that the steady state generate
the local stochastic dynamics is exactly given by a lon
range asymmetric Hamiltonian. Phase separation for
case is explicitly demonstrated. The model provides an

FIG. 7. The correlation function̂A1Ar& as a function ofr ,
obtained from the tensor product ansatz forN584 and for several
values ofq.
r
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plicit example of the mechanism leading to phase separa
or breaking of ergodicity in systems withlocal stochastic
dynamics. Although we did not succeed in solving the stea
state in the case of nonequal densities of particles, ther
strong evidence that phase separation still occurs. In orde
investigate further the case of equal densities, we employ
generalized matrix ansatz to calculate the correlation fu
tion for finite-size systems. The structure of the ansatz m
give some clue as to how to handle other 1D models wh
have so far resisted solution.

The dynamics of phase separation reduces to a coarse
problem, where the typical domain size grows logarithm
cally in time. This results from the elimination of the do
mains at a rate exponentially small in their size. The sl
dynamics poses a problem of how to access the scaling
gime numerically. With direct numerical simulations, on
small systems can be studied~see Fig. 3!. However, by em-
ploying a toy model in which domains rather than individu
sites are updated, one can simulate much larger systems
probe the scaling regime~see Fig. 5!. Such ideas of updating
domains have been used before in the study of coarse
@34#. With the aid of the toy model it should be possible
study other aspects of the scaling regime associated with
slow dynamics and escape from metastable states.

Generalizations are possible to models withM.3 spe-
cies. We have discussed some possibilities, and have sh
that phase separation may take place, although the struc
of the set of metastable states is more complicated. As
the case forM53, conditions for detailed balance with re
spect to a long-range Hamiltonian may be determined.

The problem of phase separation and coarsening also
interest in the broader context of phase transitions in o
dimensional systems. Here the existence of conserved q
tities results in certain local transition rates being zero
would be interesting to generalize this study to models
which no conserved quantity exists and all local rates
nonvanishing. Also, another open problem is to calculate
steady state of the present model in the case of none
densities.
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APPENDIX A: MEAN-FIELD SOLUTION OF TOY MODEL

To solve the mean-field model, we follow the meth
used in Refs.@27,28#. Let nl(t) be the number of domains o
size l , irrespective of the type of particle it consists of. L
l min(t) be the length of the smallest domain andM (t)
53K(t) be the total number of domains at timet. We will
assume thatnl(t) has the following scaling form in the large
time limit:

nl5
M

l min
f S l

l min
D . ~A1!

After the elimination of the smallest domain as given by E
~42!, nl , l min , andM change according to

M 85M23nl min
, ~A2!

nl85nl S 125
nl min

M
D 1nl min

nl 2 l min

M
u~ l 22l min!

12nl min (
j 5 l min

l 2 l min nj

M

nl 2 j

M
, ~A3!

l min8 5 l min11. ~A4!

Using the scaling form~A1!, we have

nl85
M 8

l min11
f S l

l min11D
'

M

l min
F f ~x!2„3 f ~1!11…

f ~x!

l min
2

x

l min
]xf ~x!G ~A5!

wherex5 l / l min and we have expanded in 1/l min . Now sub-
stituting these into Eq.~A3!, it is straightforward to show
that

f ~x!1x]xf ~x!22 f ~x! f ~1!1 f ~1! f ~x21!u~x22!

12u~x22! f ~1!E
1

`

dy f~y! f ~x2y!50. ~A6!

Using the Laplace transform,

f~p!5E
1

`

dx exp@2px# f ~x!, ~A7!

one can show thatf(p) satisfies the differential equation,

p]pf~p!5 f ~1!@f~p!21#@2f~p!1e2p#. ~A8!
e
e

at
l

-

.

Sincef(p)512^x&p1•••, by expanding Eq.~A8! to order
p, one obtainsf (1)5 1

3 . The solution of Eq.~A8! with
boundary conditionsf(0)51 andf(p)'e2p/3p for p@1
is

f~p!5

E
p

`

dx x21/3e2xe2I ~x!/3

3p2/3e2I ~p!/31E
p

`

dx x21/3e2xe2I ~x!/3

, ~A9!

whereI (x)5*1
`dt exp@2xt#/t52ln(x)2g2(n51

` (2x)n/(n!n),
andg is the Euler constant. Inverse Laplace transform of E
~A9! gives the domain size distribution. From Eq.~A9!, and
using the expansionf(p)512^x&p1•••, where the aver-
age is with respect tof (x), we obtain

^x&5
3eg/3

E
0

`

dx x21/3e2xe2I ~x!/3

. ~A10!

APPENDIX B: DETAILED BALANCE CONDITION
FOR AN M -SPECIES MODEL

We now define the most generalM species model, where
M>3. Let Xi denote a variable at sitei of a ring of sizeN,
which takes valuesXi51,2, . . . ,M . Xi5m means that sitei
is occupied by a particle of typem. The system evolves by a
random sequential, nearest-neighbor exchange dynam
with the rates

mn �
q~n,m!

q~m,n!

nm, ~B1!

andq(Xi ,Xi)51. The model conservesNm , the number of
particles of typem, for all m.

We now present a condition for the model to satisfy d
tailed balance with respect to the steady-state weight gi
by

W~$Xi%!5 )
i 51

N21

)
j 5 i 11

N

q~Xj ,Xi !, ~B2!

where the set$Xi% describes the microscopic configuration
Consider a particle exchange between sitesk and k11,

whereXk5m, Xk115n andkÞN ~i.e., in the bulk, note that
site 1 is chosen arbitrarily!. Expanding the product in Eq
~B2!, it is easy to verify that

W~X1 , . . . ,m,n, . . . ,XN!

W~X1 , . . . ,n,m, . . . ,XN!
5

q~n,m!

q~m,n!
. ~B3!

Since this holds for anym andn, and is irrespective of the
number of particles of each species, the steady-state we
~B2! satisfies detailed balance for all nearest-neighbor
changes in the bulk. If the weights~B2! are translationally
invariant then detailed balance will also hold for exchang
between sites 1 andN.
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Thus, to complete the proof of detailed balance it is s
ficient to demand that Eq.~B2! is translationally invariant.
To do this, we relabel sitesi→ i 11. The weight then be-
comes

W~$Xi%!5 )
i 51

N21

)
j 5 i 11

N

q~Xj 21 ,Xi 21!, ~B4!

whereX0 is identical toXN . Rewriting this equation by re
labeling the indices, we obtain

W~$Xi%!5F )
i 51

N21

)
j 5 i 11

N

q~Xj ,Xi !G )
k51

N21
q~Xk ,XN!

q~XN ,Xk!
.

~B5!
m
s,

-
1

s.

er

l,
-Comparing Eqs.~B5! and ~B2!, and noting, for example
that,

)
j 51

N

q~Xj ,XN!5)
l 51

M

@q~ l ,XN!#Nl, ~B6!

one can see that Eq.~B2! is translational invariant if

)
l 51

M Fq~m,l !

q~ l ,m!G
Nl

51 ~B7!

for every m51, . . . ,M . Thus detailed balance holds if Eq
~B7! is satisfied. We note that for given densities$Nm% the
manifold of solutions for the rates is ofM (M23)/2 dimen-
sions.
ev.
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