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M. R. Evans Y. Kafri,2 H. M. Koduvely? and D. Mukamél
Department of Physics and Astronomy, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JZ, United Kingdom
°Department of Physics of Complex Systems, The Weizmann Institute of Science, Rehovot 76100, Israel
(Received 24 February 1998

A driven system of three species of particles diffusing on a ring is studied in detail. The dynanaicalis
and conserves the three densities. A simple argument suggesting that the model should phase separate and
break the translational symmetry is given. We show that for the special case where the three densities are equal
the model obeys detailed balance, and the steady-state distribution is governed by a Hamiltonian with asym-
metric long-range interactions. This provides an explicit demonstration of a simple mechanism for breaking of
ergodicity in one dimension. The steady state of finite-size systems is studied using a generalized matrix
product ansatz. The coarsening process leading to phase separation is studied numerically and in a mean-field
model. The system exhibits slow dynamics due to trapping in metastable states whose number is exponentially
large in the system size. The typical domain size is shown to grow logarithmically in time. Generalizations to
a larger number of species are discus$8d.063-651X98)08608-5
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[. INTRODUCTION a local dynamical move in the models is zero. Once this zero
rate changes to a nonzero rate, SSB disappears.

Collective phenomena in systems far from thermal equi- A closely related problem to spontaneous symmetry
librium have been of considerable interest in recent ygirs ~ breaking is that ofphase separatioin 1D noisy systems.
Unlike systems in thermal equilibrium, where the Gibbs pic-This has been observed in driven diffusive models with in-
ture provides a theoretical framework within which suchhomogeneities, such as defect sit€] or particles[11]. In
phenomena can be studied, here no such framework existdlese models it has been found that macroscopic regions of
and one has to resort to studies of specific models in order 8igh densities are formed near the defect, much like a high
gain some understanding of the phenomena involved. density of cars behind a slow car in a traffic jd?,13.

One class of such models is driven diffusive systemé"ere the phase separation is triggered by the defects. It is of

(DDS) [2,3]. Driven by an external field these systems do notnterest to study whether phase separation can occur in 1D

generically obey detailed balance, so that the steady state hag'sy fhomogehneoltljs syst.elmsl Suﬁh asonaring georTer:ry with
nonvanishing currents. Theoretical studies of DDS have relo d? ects, whera possible local transition rgtes which are
) consistent with the symmetry and conservation laws of the

vealed basic differences between systems in thermal equilikh-mdel are nonvanishing. Recently, Lahiri and Ramaswamy
rium and systems far from thermal equilibrium. For example jyiqyiced a lattice model in the context of sedimenting col-

it is well known that one-dimension&l D) systems in ther- |qiqa) crystals, where phase separation is found to take place
mal equilibrium with short-range interactions do not exhibityithout any inhomogeneitiefl4]. In this model, there are
phenomena such as phase transitions, spontaneous symmaify rings coupled to each other, and particles on each ring
breaking(SSB), and phase separati¢except in the limit of  yndergo an asymmetric exclusion process. The hopping rate
zero temperature or in the context of long-range interactionspetween site andi+ 1 on each ring depends on the occu-
[4]. In contrast, some examples of noisy 1D DDS with localpation at theith site on the other ring. However, this model
dynamics have been found to exhibit such phenomena. s studied mainly using Monte Carlo simulations, and no
One example of a noisy system which exhibits SSB in oneanalytical results are available so far.
dimension is the asymmetric exclusion model of two types of In a recent papefl15], we introduced a simple three-
charge studied in Ref45,6]. In this model, two types of species driven diffusive model exhibiting phase separation
charge are biased to move in opposite directions on a 1@nd spontaneous breaking of the translational symmetry on a
lattice with open ends. The charges interact via a hard-corgng. In the model, nearest-neighbor particles exchange with
interaction, and are injected at one end of the lattice andiven rates, and the numbers of each species are conserved
ejected at the other end. This model is symmetric under thander the dynamics. The rates of all local dynamical moves
combined operations of charge conjugation and paf§  that obey the conservation laws are nonzero. An argument
symmetry. However, this symmetry is broken in the steadyindicating that generically the system phase separates, thus
state, where the currents of the two charges are not equdireaking the translational invariance, was given for the case
The reason for symmetry breaking in this model lies to somavhen none of the species of particle has a zero density. In the
extent in the open boundaries. Other examples of models igpecial case of equal numbers of particles of each type, it
which there is SSB in one dimension have also been found ivas shown that the local dynamics obeys detailed balance
the context of cellular automafd] and surface growtfB8,9].  with respect to a long-range asymmetiichiral) Hamil-
In the latter, SSB was due to the fact that one of the rates faonian. In this special case, using the Hamiltonian, we have
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found the steady state of the model exactly, and have beemaction. The partition sum and steady-state correlation func-
able to prove the existence of phase separation analyticallyions can be conveniently computed numerically using this
The existence of a Hamiltonian for this special case is otensor product ansatz.

interest in the light of speculation that nonequilibrium sys- The paper is organized as follows: In Sec. Il, we define
tems exhibiting generic long-range correlations might be dethe model introduced in Ref15], and we present an argu-
scribed by effective Hamiltonians containing long-range in-ment which indicates that the system should phase separate
teractions[16,17). Here we explicitly demonstrate that for &S 0ng as none of the species of particles has zero density. In
the special case where the three densities are equal, tReC- Il we study the special case where the model satisfies
model is exactly described by a long-range asymmetriéjet_a"ed balance and expllculy write down t_he steady-state
Hamiltonian. The model not only has long-range correlationdV€ight for the three-species model. The existence of phase

but has generic long-rangeder. The mechanism found in separation in the model for any noninfinite temperature is

this study suggests that systems with dynamical rules define%“?ved analytllcally by _calculatlng_ some bounc_js on the two-
completely locally anda priori without respect to any point correlation functions. Section IV contains numerical

Hamiltonian may have a steady state where the ConfiguratiogvIdence of phase separation in the general case where the

space is sampled according to a measure that is intrinsical ensities of th? three_s_pecies O.f _particles are not eq_ual. The
global. The Hamiltonian also allows us to identify the analog oy m(_)del, V;h'Ch faglhtzri]tesd eff|C|e_nt I\/flonr:e Carlo 5|m_ula- A
of a temperature in the microscopic dynamics as related tons, Is used to study the dynamics of phase separation.

the drive of the system: for zero drive, that is Syrnrnetricmean-ﬂeld analysis of this toy model is presented, the details

diffusion of the particles, the effective temperature is infinite,t.’e_Ing left to Appen'd|x A'. In Sec. V, we present results fqr
and phase separation is lost. finite systems obtained via the_tensor prod_uct ansatz. Using
We note that a related but distinct three-species mod ese results we study finite-size scaling in the system. In

was recently introduced by Arndt, Heinzel, and Rittenberg. ec. Vi, we ad(_jress pha;e separation in systems with more
This model also exhibits phase separatid]. Also, a than three species of particles and a proof of detailed balance

model with cyclic symmetry and nonconserving dynamics:for special Cases Is given in Appendlx.B. We conclude in
Sec. VI, and discuss some open questions.

that exhibits coarsening has been studied].
In the present work we analyze in detail thie= 3 species
model which was introduced in Rgfl5], and then general- Il. DEFINITION OF THE MODEL

ize it to Iargehr_Mh. V\{le pfo;’ide ahcomplete Fl"o‘l)f of phfasr:-z We start by defining a three-species model which exhibits
separation which follows from the exact calculation of the,, e separation in one dimension. Consider a one-

partition sum in the thermodynamic limit. We also provide dimensional, ringlike(periodio lattice of lengthN where

numerical evidence of phase separation in the general casgg ., site is occupied by one of the three types of partiéles,

where the densities of the three particles are not equal. B, or C. The model evolves under a random sequential up-

. In °fdef to study the coarsening process, Monte Car.l%ate procedure which is defined as follows: at each time step
simulations are performed. However, simulation of the Mi-

; . . . ighbori it h ly, and th ticl
croscopic model is hampered by slow dynamics, WhlchWO neighboring sites are chosen randomly, and the particles

o oe . : at these sites are exchanged according to the following rates:
makes it difficult to access the scaling regime. The system ¢ g ¢

becomes trapped in metastable states comprising several do-

mains of each type of particle. The number of metastable AB?BA,
states is exponentially large in the system size. The lifetimes q
of the metastable states increase exponentially with the av- BC? CB, 1)

erage domain size as the fully phase separated state is ap-
proached. Thus the model provides an example of slow dy-
namics in a system without any quenched disof@éx. CA?AC.
To ameliorate the difficulty of numerically studying such
slow dynamics we employ a toy model, wherein it is theThe particles thus diffuse asymmetrically around the ring.
domains that are updated rather than the individual particled.he dynamics conserves the number of partidlgs Ng,
This allows the long-time scaling behavior of the domainandN¢ of the three species.
size to be investigated, and to confirm a logarithmic growth Theq=1 case is special. Here the diffusion is symmetric
of the average domain size with time. The toy model alscand every local exchange of particles takes place with the
affords a mean-field solution for the long-time dynamicalsame rate as the reverse move. The system thus obeys de-
behavior, that again confirms the scaling behavior. tailed balance, reaching a steady state in which all micro-
Returning to the case of equal numbers of particles ofcopic configurationgcompatible with the number of par-
different species, it is of interest to investigate the steadyticles Ny, Ng, andN¢) are equally probable. This state is
state behavior in finite-size systems. We have found it conhomogeneous, and no phase separation takes place. We now
venient to do this by employing a matrix product techniquepresent a simple argument suggesting that def1 the
previously used to solve the steady state of asymmetric exsteady state of the system is not homogeneous in the thermo-
clusion processd®1]. However, in the case of three speciesdynamic limit. For simplicity, the casg<1 is examined. As
the simplest form of this techniqud.1,21,13 is applicable a result of the bias in the exchange ratesAaparticle pre-
only to a limited class of systeni22]. For the present model fers to move to the left inside B domain and to the right
we generalize the matrix product to a product of rank 6 teninside aC domain. Similarly the motion a8 andC particles
sors, and write the steady state by taking an appropriate coim foreign domains is biased. Consider the dynamics starting
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from a random initial configuration. The configuration is corresponding Hamiltonian, which determines the steady-
composed of a random sequence of domain&,d8, andC state distribution, is found to have long-range asymmetric
particles. Due to the bias a local configuration in whichfan interactions. Using this Hamiltonian, we analytically calcu-
domain is placed to the right of & domain is unstable, and late the partition sum and bounds on the correlation functions
the two domains exchange places on a relatively short timé the thermodynamic limit. These are then used to prove the
scale which is linear in the domain size. SimilarlyC and  existence of phase separation in the model. Later, in Sec. V,
CB domains are also unstable. On the other hasl, BC, we study finite systems for this case and the approach to the
andCA configurations are stable and long lived. Thus after ahermodynamic limit.

relatively short time the system reaches a state of the type
...AAABBCCAABBBCCC.., inwhich A, B, andC do-
mains are located to the right &, A, andB domains, re- )
spectively. The evolution of this state takes place via a slow The general argument presented in Sec. Il suggests that
diffusion process in which, for example, the time scale for arfor the special casi,=Ng=Nc, the steady state carries no

A particle to cross an adjaceBtdomain isq~', wherel is ~ current fqr any system size. We demonstrate this gxplicitly
the size of theB domain. The system therefore coarsens and?Y Showing that thdocal dynamicsof the model satisfies
the average domain size increases with time agetal_led _balance with respect tolang-range asymmetric
Int/|ln ¢ [23]. Eventually the system phase separates intdi@miltonian’. . .

three domains of the three species of the form We define the occupation variablés, B, andC; as
A...AB...BC...C. follows:

In a finite system the phase separated state may further
evolve and become disordered due to fluctuations. However,
the time scale for this to happen grows exponentially with
the system size. For example it would take a time of order of
q~™"Ne Nl for the A domain in the totally phase separated The variablesB; and C; are defined similarly. Clearly the
state to break up into smaller domains. Hence in the thermarelation A, + B; + C;=1 is satisfied. A microscopic configu-
dynamic limit, this time scale diverges and the phase sepaation is thus described by a sgX;}={A;,B;,C;}. Using
rated state remains stable provided the density of each spgrese variables, we will show that the Hamiltonigrand the
cies is nonzero. Note that there are always small quctuationgeady_State distributiodV, corresponding to the dynamics
about a totally phase separated state. However, these fluctu@) for the caseN A=Ng=Nc=N/3 are given by
tions affect the densities only near the domain boundaries.

They result in a finite width for the domain walls. The fact N-1 N

that any phase separated state is stable for a time exponen- ) — R _CALRA.

tially long in the system size amounts to a breaking of the HAXH 2’1 j=§i;rl [CiB = CA+BiAL, &
translational symmetry.

Since the exchange rates are asymmetric, the system ge-
nerically supports a particle current in the steady state. To
see this, consider th& domain in the phase separated state.
An A particle near the . .AB. .. boundary can traverse the HereZy is the partition sum given b q™*i), where the
entire B domain to the right with an effective rate propor- sum is over all configurations in whidd,=Ng=Nc. Note
tional to qNB. Once it crosses th8 domain it will move that the Hamiltoniar#{ does not determine the dynamics of
through theC domain with rate t . Similarly anA particle ~ the system, it just governs the steady-state distribution as
near the .. CA... boundary can traverse the entedo-  given in Eqs(3) and(4). Equation(4) suggests thaq serves
main to the left with a rate proportional igc. Once the as a temperature variable wikir=—1/Inq. Thusq—1 is
domain is crossed, it moves through helomain with arate  the infinite-temperature limit. The Hamiltonid8) is written
1—q. Hence the ne particle current is of the order of in @ form which is not manifestly translationally invariant.
gNe—qgNc. Since this current is exponentially small in system However, careful examination reveals that when the relation
size, it vanishes in the thermodynamic limit. For the case ofNa=Ng= N is taken into account, the Hamiltonian as given
Na=Ng=N¢, this argument suggests that the current isPy Ed.(3) is indeed translationally invariartsee Appendix
strictly zero for anyN. In Secs. Ill and V, we study this case B). Therefore site 1 may be chosen arbitrarily. An expression

A. Detailed balance

1 ifsitei is occupied by ai\ particle
i= , 2
0 otherwise.

Wy({Xi}) =z tgmib, (4)

in detail. for H which is manifestly translationally invariant will be
The arguments presented above suggesting phase sepaii@tived at the end of this section.
tion for <1 may be easily extended tp>1. In this case, Note that

however, the phase separated staRASC rather tham$ABC.

This may be seen by noting that the dynamical rules are N-1 N
invariant under the transformatiog— 1/q together with 21 2 (CiA+AC))=(N/3)?, 5
A<—>B 1= J=1+

since the left-hand side yields the number®A (and AC)
pairs in the system. Using this relation the Hamiltonian may

In this section we show that the dynamit®, for the also be written in a form where the cyclic symmetry is more
special caseNy,=Ng=N., satisfies detailed balance. The apparent:

IIl. SPECIAL CASE Na=Ng=N¢
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N-1 N of the Hamiltonian is given by the fully separated state
H{XH=2, 2 [CiBj+AC;+BA]1-(N/3)2 A...AB...BC...C and its translationally related states.
=1 =i+l The degeneracy of the ground state is thysand its energy

6 is zero. A simple way of evaluating the energy of an arbitrary
configuration is obtained by noting that nearest-neighbor

The proof of Eqs(3) and (4) is straightforward. This is %(;?n) exchange#\B— BA, BC—»CB andCAAC cost one
t

done by considering a nearest-neighbor particle exchan it of h while th h It
and verifying that detailed balance is satisfied with respect nit ot energy each, while the reverse exchanges resuit in an

Eq. (4). We start by considering nearest-neighbor sites in th&Neray gain of one unit. The energy of an arpitrary configu-
interior of the lattice, namely, pairs other than YL For ration may thus be evaluated by starting with the ground

example, consider the exchangd— BA taking place at state and perfc_)rming nn exchanges until the configuration is
two adjacent sitek andk+ 1, wherek# N. This exchange reached, keep”?g track of the egergy Ch’?‘”ges at each step of
results in the contribution of one mo&A; term in#, and the way. The highest energy 18°/9, and it corresponds to

hence the energy of the resulting configuration is higher b)g\]e A totally phase separated configuration

; : C...CB...B and itsN translations.
1. It is easy to see using E@4) that qWy(...AB...) S . .
—W,(...BA...), asrequired by detailed balance. Similar In considering the excited states of the Hamiltoni&h

relations are easily derived for exchange BE and CA we note that the model exhibits a set of metastable states

pairs. Now consider an exchange taking place between siteWhICh correspond_ to local m|_n|ma_of the energy: any ex
N and 1, sayCA—AC. According to Eq.(3), this exchange change of nn particles results in an increase of the energy. In
' ; 9 a4, %€ these states, n@A, CB, and AC nn pairs exist; only
costs an energy of Rg—Np—Nc+1. Therefore the ex- ; X -
i 4 . AB,BC, andCA nn pairs may be found in addition #A,
change satisfies the detailed balance conditio

GWR(A . ..C)=Wy(C . ..A) only when Ng=N,+Nc. rISB, and CC. Any metastable state is thus composed of a

Similarly, by considering the exchangé8—BA andBC zeqxen;:r? dOE]: %%rrr:;\li?]ssInr(\a,vshlggti\?élan'?'r?e(rj;?riln;af(:orlmlor:,qveta-
— CB, one deduces that the detailed balance condition is.’ ,’ ’ P Y.

satisfied for any exchange at sitBisand 1 as long a®l st_able state has an equal number of domainef each type
—Ng=Nc. In Appendix B, we consider the most general with s=1,... N/3. The s=1 case corresponds to the

nearest-neighbor exchange rates Nbrspecies and arbitrary g\ré)lén:B CStati’B CV;?QIZ S(:Zn’:l/%segog;zsfoigﬁgf dc:(r)nair:rs]e
densities, and derive condition®87) for exchange rates ’ P

which satisfy detailed balance each of length 1(The total number of domains in anstate

To write H in a manifestly translationally invariant form, IS ?:Sé)r calculating the free energy and some correlation func-
we defmeHio({Xi}) as the Hamiltonian in which sitg is tions corresponding to the Hamiltoni&8), we find it useful

the origin. That is, first to derive some bounds for the numbfs) of s states
N+ig—2 N+ig—1 and tzei_z_henergiesh In the Jolgnwinﬁls&l:mh bour|1ds arﬁ pfre-
) — B ~ALRA sented. They are then used, Sec. , to evaluate the free
HigiXih) Z‘O ] [CB=CA+BAL () energy and correlation functions of the model.
To obtain a bound foV{s) we note that the number of
where the summation ovérandj is moduloN. Summing  ways of dividingN/3A particles intos domains is {3 1).
Eq. (7) over allig and dividing byN, one obtains The number of ways of combiningdivisions of each of the

three types of particles is cleary(\3 1)]%. There are at

_ _K _ mostN ways of placing this string of domains on a lattice to
H({Xi})_izzl kzl (1 N)(C‘B”" Cifdi vt Bifi+id obtain a metastable statthe number of ways need not be
(8) equal toN since the string may possess some translational
symmetry. One therefore has
N/3—1\ 13 10
o1l O

N/3—1
s—1 1
Thus the total number of metastable states is exponential in
where in the summation the value of the site indexK) is  N.
moduloN. In the Hamiltoniar{g) the interaction is linear in We now consider the energy of the metastable states. It is
the distance between the particles, and thus is long rangegasy to convince oneself that, among sitates, none has
The distance is measured in a preferred direction fromisite energy lower than the following configuration:
to sitei + k. Moreover, it is asymmetric in the sense thats

not invariant under the parity operation. It is also related to A...AB...BC...CABCABC...ABC, (1)
chiral Hamiltoniang 24].

N N-1

3
<Ms)=<N

2 2[4

X (CiBi+k+ACik+BiA 1) — (N/3)?, 9

where the 3¢—1) rightmost domains are of size 1 and the
B. Ground states and metastable states three leftmost domains are of siz&l/3—s+1) each. The
Before proceeding further to evaluate the partition sumenergy of this statefZ¢ satisfies the recursion relation
and some correlation functions associated with the Hamil-
tonian(3), let us make a few observations. The ground state Es=Es_ 1+N/3—s, (12



2768 M. R. EVANS, Y. KAFRI, H. M. KODUVELY, AND D. MUKAMEL PRE 58

with E;=0. To see this one notes that thestate may be AAAAABEBEBBBBBCCCCCCCAA
created from the— 1 state by first moving 8 particle from 1 l N
the leftmostB domain acrossN/3—s) C particles to the
right and then moving amA particle from the leftmostA

domain to the right across the adjac&tand C domains.
The energy cost of these moves N/8-s), yielding Eq.
(12). The recursion relatiof12), together withE;=0, is

then readily solved to give

FIG. 1. Thel =5 ground state for ahl=21 system.

where D(m) is the number of configurations of energy.
Clearly, the number of possible configurations in the system
is bounded crudely from above by'3This bound implies

Eym(s-1)n - 2D (13) N2
® 3 2 Zp-an< 2>, 3Vg™ (18)
m=aN+1

The energy of all metastablg states is larger than or
equal toEs, as given by Eq(13). In Secs. Il C and 1D, Thys, for g< (%)Y, the contribution to the partition sum
we use the boundl0) a'nd 13 tq calculate the part|t|on arising from energies larger thaN is exponentially small
sum _and. some correlation functions corresponding to thgan N and may be neglected in the thermodynamic limit.
Hamiltonian(3). The calculation ofZy is thus reduced to calculating a
truncated partition sum in which only energies upats are

C. Partition sum summed over. To proceed we consider 3, and take into
In this section we prove that, in the largelimit and for ~ @ccount configurations with energy less tHef8—1. This
all g<1, the partition sum is given by glmpllfle_s the calculations considerably since all cqnflgura-
tions with energym<<N/3—1 may be decomposed infd
Zn=N/[(q).]3, (14 disjoint sets of states, each corresponding to a unique ground
state(see Sec. Il B for a discussion of ground staté&e
where label the sets by=1, ... N, the position of the rightmogt
particle in theA domain of the ground state belonging to the
(@)= lim (1—q)(1—q?)---(1—qg"). (15) set(see Fig. 1 for an example of &5 ground state Each
n—o state in a specific set can be obtained from the corresponding

ground state by exchanging nearest neighbors, so that the

The partition sum foig>1 may be obtained by replacingy  energy always increases along the intermediate states. Note
by 1/g in Eq. (14). Note that the partition sum is linear and that this is correct only if excitations of energy less than
not exponential inN, meaning that the free energy is not N/3—1 are considered. This is because not all higher energy
extensive. This is a result of the long-range interaction in thestates can be reached by uphill steps from a ground state.
Hamiltonian, and the fact that the energy excitations are lo- Thus, using translational invariance, the partition sum can
calized near the domain boundaries, as will be shown in th&e written as
following.

For g close to 1, §).. has an essential singularity,

Zn=N2Zy+e N, (19
(q).= e~ (Un q)[w2/6+0(1—q)]' (16)
where 2y is the truncated partition sum of one of tNesets

This suggests that the extensivity of the free energy could bgf configurations. o o
restored in the double limig—1 and N—o, with N Ing We proceed to calculatgy . This is done by considering
finite. This scaling behavior is only suggestive since expresall the possible energy excitations with energy less than
sion (14) may not be valid in this limit. Fog=1, all con- N/3—1 above one ground state. Consider a specific domain
figurations withN,=Ng=N¢ are equally probable, so that boundary, sayAB. Excitations of energyn at this boundary
the partition sum is given b)ZN:(N/a)(ﬁ%a), which goes can be created by moving one or maearticles into theB
like 3N for largeN. domain (this is equivalent to movin@ particles into theA

It is instructive to first present the proof of E(u4) for ~ domain. An A particle moving into thé8 domain is consid-
small values ofy. This proof will then serve as the basis for eréd as a walker. The excitation energy increases linearly
the proof for anyg<1. with the distance the walker has moved. Thus, in this picture

We start by noting that in calculating the partition suman €xcitation of energyn is created by &j<m walkers,
(14), configurations with energy larger thaN (a>0) may traveling a total distancen. The number of excitations of
be neglected in the thermodynamic limit. For simplicity, we €Ne€rgym is then given by the number of wayB(m), of
first demonstrate this fay< (1/3)/2, although later we show Partitioning an integem into the sum of a sequence of non-
it for any g<1. The contribution to the partition sum from increasing positive integers. Taking into account excitations

these energy stateZ,- ., is given by at all three boundaries, an excitation of enengyn the sys-
tem is created by three independent excitations of energy
N2/9 m,, m,, andm; at the different domain boundaries such that
Zoean= 2 D(m)q™, 17) My + M+ mg=m. The number of excitations o_f this form is
1 just given byP(mq)P(m,)P(mj3). Thus Z is given by
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N/3-2 m

est neighbors such that the energy always increases along the
Zy= 2, " 2 P(my)P(my)P(my)

path until the configuration is reached. In what follows it is
demonstrated that none of the configurations which can be

) 20 obtained froms>1 states, by the above procedure of particle
m;+m,+mg,m ( ) . . .
exchange, contributes to the partition sum in the thermody-
Taking the thermodynamic limit, we obtain namic limit. o
An upper bound on the partition sum may be calculated as
* 3 follows: using the same steps of derivation used for comput-
lim Zy= E q™P(m) (21)  ing 2y, it is straightforward to show that the contribution to
N— o

the partition sum from as state and associated configura-

tions is at most @5~ VINB=s(s-D/A(q),]73, The prefactor
Using a well known result from number theory, attributed to . -
g y q(s~INB=s(s=1)/2 arises from the minimum energil3) of

Euler, for the generating function &i(m) [25], this metastable state. Therefore, by considering the contribu-
tions from all thes states, and using E(L0), the following

2, q"P(m)=

, 22 bound is found:

(@) @)

and, using Egs(21) and(19), Eq. (14) is obtained. 3 N§ N/3—1
So far we have proved that for<(3)3, Eq. (14) is exact Zn<N/(9)-] +s=2 N s—1

in the thermodynamic limit. We now extend these results for
anyq<1. First we have to show that the states ignored in the
previous calculation fog=<(3)3 may be ignored for alb
<1. To do this we calculate upper and lower boundZqn

Xq(sf 1)N/3—s(s— l)/2[(qw)]73s_ (23)

The second term on the right-hand side represents the con-

and show they converge for large enough tribution from excitations around the metastable states. Re-
For this we have to consider the entire energy spectrum aflacing q(s~DNE=s(-12 by an upper bound|®™ VN6, one

the Hamiltonian. Any configuration of the system which is can sum the binomial series. The resulting expression is ex-

neither a ground state nor a metastable state can be obtainpdnentially small inN for anyg<1.

from at least one ground state1) or a metastable state A lower bound onZy can be calculated by neglecting

(s>1) as follows: starting from this state, exchange near- configurations with energy greater thifi3— 1 as follows:

N/3—-2 m
Zy>N 2, g 2 P(mMy) P(Mp) P(Mg) 8+ m, +my m (24)
o m
=N(@==N > q" 3 P(my)P(my)P(Ms) o, +mg m (25)
>N/[(@).]~N_ 2 g™(mP(m))3. (26)
[
The asymptotic behavior d?(m) [25] is given by

(AB)= - 2 AB; g, (29

P(m)= exp(m(2/3)*2 m*?).

1
" (27)

Thus, for largeN the lower bound(26) converges to Eq.

(14), as does the upper bour@3).

where the summation is over all configuratiof,} in
which Ny=Ng=N¢. Due to symmetry, many of the corre-
lation functions will be the same, for examplhiA;)
=(B;B;)=(CC;). A sufficient condition for the existence
of phase separation is

lim lim ((A1A) —(A){A;))>0. 29
D. Correlation functions F—so0 Nﬁx« A~ (A (A) 29
Whether or not a system has long-range order in the
steady state can be found by studying the decay of two-poirfsince  (A;)=4%, we wish to show that

density correlation functions. For example the probability oflim, ., limy_..(A;A,)>3. In fact we will show below that,
finding anA particle at siteé and aB particle at sitg is, for any givenr and for sufficiently largeN,
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(ALA,)=1/3—O(rIN). (30) VSN

] ) BBBBBBBCCCCCCCA
This result not only demonstrates that there is phase separa
tion, but also that each of the domains is pure. That is, the r ! N
probability of finding a particle a large distance inside a do- F|G. 2. A ground state whet&, =1 andB,=0. In order to have
main of particles of another type is vanishingly small in theBr:]_, it is necessary for 8 particle to travel a distance d¢f-r
thermodynamic limit. +1 into theA domain.

To prove Eq.(30), we use the relation/A;A)=3
—(A.B,)—(A;C,), and show that the correlation function r-1
(A;B,) is of O(r/N) and (A;C,) is of O(1/N). Here we > (AB ) =<r—1. (34)
show only the proof fofA;B, ), since the proof ofA,C,) is =1
similar. We also restrict ourselves te=N/3, which is suffi- . o )
cient for proving Eq/(30). _(ll) Grou_nd st_ate_s where /A= 1,_Br=(_): in principle, sm_er

We have already seen that the contribution to the partitiodight be either inside th& domain or inside th€ domain.
sum from the metastable states, and excitations above theffowever, since site 1 is in tha domain and we consider
are exponentially small in the system size and hence may by r<<N/3, siter must be in theA domain. The ground
neglected. Therefore, for calculating the correlation functiorstated for which this takes place satisfy<|<N/3. Clearly,
it is sufficient to consider th&l ground states and excitations ©only the excited states whei =1 contribute to(A;B,), .
above them, which may be reached by moves which onlyn such excited states one of tBewalkers travels at least a
increase the energy. As we have seen, these statesNormdistancd —r +1 into theA domain(see Fig. 2 For this case
disjoint sets of states, each associated with one of the grouie can give the upper boundAB )<= | .,Z/Z.
states. Using this we now show thi@;B,)=0(r/N). For ~ From Eq.(32), Zs/Z=g°. Hence,
this purpose we use a restricted partition sd which is
defined as the partition su calculated with the constraint s
that one of the walkers, say of type has traveled at least er <AlBr>'$|§=:r s=|Zr+1 q°. (35
distances. It is given asN—» by

N/3 N/3 %

o m (i) Ground states where #=0, B,=1: again, since
_ m s <NJ/3, site 1 has to be inside thi& domain. The values df
s mEZO g miz:’o PAMy)P(M,) P(Ms) S+ +mg - satisfying this condition are in the rang®B+r<I<N. In
(31 this case only excited states in which one of thevalkers
travels at least a distandé—I|+ 1 into theB domain will
HereP®(m) is the number of partitions of integer, with the  contribute to(A;B,),. Hence we can use the upper bound
constraint that in all the partitions the integeoccurs at least (AB)\ <=7 \_ 112/ Z, in this case. Therefore,
once. Noting thaP3*(m)=P(m-—s) it is easy to show that

N N o)
Z=0°Z, (32 > (ABy= > > o (36)
|=2N/3+r |=2N/3+r s=N—I+1

where Z=limy_ .2y - )

We now proceed to derive a bound foA;B,). Recall (iv) Ground states where A=0, B,=0: there are three
that| is the position of the rightmosA particle in theA  Ppossibilities here(a)_sne 1 is inside theC domain and site
domain in the ground state labeledf we define(A;B, ), as IS inside theA domain (N/3<I<N/3+r), (b) both the sites 1

the correlation function calculated within the set of statesandr are inside theC domain ¢ +N/3<I<2N/3), and(c)
labeled!, we can write site 1 inside theB domain and site inside theC domain

(2N/3<I<2N/3+r). Since all these are consistent with
1 N <NJ/3, all these cases can occur. It can be shown that the
(AB,)= N > (AB,), (33) minimal energy needed to create an excited state whgre
=1 =1 andB,=1 is e,=2l —r —N/3—1 for case(a), e,=N/3

) . ) , +r—3 for case(b), and e,.=5N/3—2l+r—1 for case(c).
up to exponentially small corrections in the system size. Fofrhe resulting expression for the bound is

convenience we break the summation ovémto four sums

according to the values o&; and B, in the ground state. 2N/3+1—1 N/3+r—1 o 2N/3

These four parts correspond (g ground states wheré; > (AB/)< DD DD &
=1,B,=1, (ii) ground states wher&;=1 andB,=0, (iii) I=N/3+1 I=N/3+1 s=¢, I=N/3+r s=¢p
ground states wherd;=0, B,=1, and(iv) ground states ON/BLT—1 o

whereA;=0 andB,=0. We now consider each of these in n 2 E s (37)
detail, and give an upper bound f&;B,), in each case. I=2N/3+1 s=e;

(i) Ground states where A1, B,=1: In this case the
site 1 is inside theA domain and siter is inside theB The summations on the right-hand sides of E@®)—(37)
domain. Since we consider onty=N/3, these states corre- can be carried out explicitly. To leading order, the summa-
spond to thé ground states with%|<r. Using the fact that tions givesq/(1—q)? for each of Eqs(35) and (36). The
(A1B;)<1, one finds summation on the right-hand sides of E87) vanishes ex-
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ponentially in the thermodynamic limit. Using Eq&3)— 10° ¢ ; ; ; ; ;
(36), we obtain the following expression for the upper bound
on(AB,):

1
AB)<—|{r—1+ +e O], 38 i
< 1 I'> N (1_q)2 ( ) 106 I
Therefore (A;B,)=0(r/N). Similarly one can show that .
(A;C,)=0O(LN). Thus for allg<1, (A;A;)=2%—0O(r/N), 10
proving the existence of a complete phase separation.

10* | ]
IV. COARSENING ;
A. Monte Carlo simulations |

10 1 ] ] ] 1
40.0 50.0 60.0 70.0 80.0 90.0 100.0
N

We have demonstrated that in the thermodynamic limit
the system is phase separated whigi= Ng=N¢. The gen-
eral arguments given in Sec. Il indicate that when the global FIG. 3. The decay timé¢; measured for different system sizes
densities of the three species are nonvanishingggad, the  for severalq values. HereNo/N=0.4, Ng/N=0.35, andN¢/N
system phase separates, even when the three densities are n€t25. The data are averaged over a 100 rtings measured in
equal. The argument suggests that the typical timein ~ Monte Carlo steps.
which the system leaves a specific phase separated configu- . .
ration increases exponentially with the system size. Thus g'0del(1). The toy model can be conveniently simulated for
phase separated state is stable in the thermodynamic limit. fystems larger by about two orders of magnitude.
the following we use Monte Carlo simulations to support

these arguments. B. Toy model
The timet; can be measured using the autocorrelation e now construct a simple toy model which captures the
function defined as essential physics of the coarsening process in the model at

1 large times, and enables us to simulate systems much larger
than those accessible by Monte Carlo simulation. Using the
— ) . +(B-: . +{(C. ) ) -
N 2‘1 (AOAID) +(BI(0)B (D) H(C(O)Ci(D)), toy model we examine another characteristic scale of the
(39 system, namely, the average domain gi2eas a function of
time, t. The results support the simple argument leading to a

whereA(t), B;(t), andC;(t) are the values of the occupa- domain growth law(l)~Int/|Ing|. A mean-field version of
tion variablesA; , B;, andC; at timet, and(- - -) denotes an  the toy model is then solved analytically.
average over histories of evolution. Clearty0)=1, while We consider a system at timesuch that the average
(%) = (NA/N)2+ (N5 /N)2+ (Nc/N)2, the value of the au- domain sge(l), is much larger Fhan the domain wall width.
tocorrelation between two independent configurations. Thuét these time scales, the domain walls can be taken as sharp,
t; may be defined as the decay timectf) to c() when at and we may consider only events Whlch modify the size of
t=0 the system is totally phase separated. domaln_s. This means fthat_the dynamics of the system can be
We have measured the time scajeusing Monte Carlo approxmate_d by c_on3|der|ng only the movement of partlck_as
simulations for different system sizes fii,=Ng=N¢ and bgtween neighboring dqmam; of the same species. US|.ng
for N Ng# Nc for severalg values. An example of such this we represent a configuration by a sequence_of domains
measurements foMN,/N=0.4, Ng/N=0.35 and Nc/N  Of the formA;B,C,A;B,C; . .. AcBCy , where theth do-
—0.25 is presented in Fig. 3. In the figutejs plotted versus M&in of, sayA, particles is represented by, as shown in
system size for several values qf This agrees with the F9- 4. The eéxchange of particles between domains,/fsay
exponential growth of, with the system size suggested by @1d Ai1, takes place at a rate dictated by the size of the
the simple argument of Sec. Il. The same behavior seems f°mainsB; andC; which separate them. Since intermediate
occur for all g#1, and for different choices oN,/N,  configurations of the form . .A;_;B;A{C; ... rearrange on
Ng/N, andNc/N. Therefore, we conclude that the Monte short time scales compared with the_evolu_tlon between meta-
Carlo simulations support the claim that for agy1 the ;table states, only metasf[able _conflgurathns are (_:on3|dered
system will phase separate into three domains in the thermd? the toy model. Events in which a domain splits into two
dynamic limit, even when the number of particles of eachd'® ignored. _ _
species is not equal. In the thermodynamic limit the transla- USiNg these ideas we define the dynamics of the toy
tional symmetry is spontaneously broken in this state. Due tg"0del as follows: at each time step two neighboring domains
the slow dynamics, which reflects escape from metastable
states, Monte Carlo simulations could be performed only for
a relatively small system sizél(=100). In order to study the
coarsening process for larger systems we employ, in the fol- FIG. 4. A configuration of the toy model represented by a se-
lowing, a toy model which mimics the dynamics of the quence of domains.

c(t)=

A4 By C4 Ck-1 Ak By Ck
[ _ ../l .
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of the same species of particle are chosen randomlyAsay <>
andA; ;. Let a;, b;, andc; denote the lengths of the do-
mainsA;, B;, andC;, respectively. The length of the do-

main chosen is then modified by carrying out one of the 100.0
following processes:

(1) a—a-1
with rate  q",
aj+1—aj11t1 a
(40 50.0 | _
(2) ai—>ai+1
with rate S,
a+1—a41—1 g
where, as beforegg<<1 is considered. 0.0 5 - L \
10 10 10 10

If a; becomes zero, then delete the domaAinfrom the
list of domains, and mergB; and C; with B;_; andC;_1,
respectively. Then, foj>i, shift the indices of the domains  FIG. 5. Monte Carlo simulation results for the toy model for the
from j to j—1, so thatK becomesK—1. The rules for average domain sizél), vs timet, for N=9000 andg=0.8. Time
updatingB and C domains can be obtained from E@O0) is measured in Monte Carlo steps. The data are averaged over 1760
using cyclic permutations and a slight change of indices. runs.

Note that the toy model is only relevant to the description
of the coarsening dynamics. This is because here, once tisize of domains, one can consider a model where dynamics
system is left with three domains, it remains in that state. occurs only in the vicinity of the smallest domains. The

To simulate the toy model efficiently, an algorithm suit- mean-field approximation assumes that different domains are
able for rare event dynamics must be used due to the smalincorrelated, and does not distinguish between domains of
rate of event$26]. We use an algorithm which is performed different species. The second assumption relaxes the conser-

t

by repeating the following steps. vation of particles of each species. Thus, in contrast to the
(1) List all possible event$n} and assign to them rates systems studied in Reff27] and[28], we do not expect the

{r,} according to the rules of the model. mean field to become exact in the scaling limit. We define
(2) Choose an evermn with probability r,/R, whereR  the mean-field model as follows.

=3.rp. (1) Pick one of the smallest domail,, .
(3) Advance time byt—t+ 7, wherer=1/r,. (2) Pick two domainsD; and D, randomly, and treat

The algorithm would be equivalent to a usual Montethem as the neighbors &f ;.
Carlo simulation, where one time step is equivalent to one (3) Pick three more domains randomly, sy, D,, and
Monte Carlo sweep, if, in stef8), 7 would be drawn froma Ds.
Poisson distributiorR exd —R7]. However, here we make (4) Eliminate Dpi,, D, and D5 from the system, and
an approximation by using the deterministic choiee change the length of the domaibs, D4, andDs by

=1rh,.
We have simulated the dynamics for lattices of size up to ID3*>| Dyt ' Dy
9000. For simplicity we consider the cag=Ng=Nc. An
example of a typical behavior of the average domain size as ID4—>I D, T I D, (42

a function oft is shown in Fig. 5. One can see that after an
initial transient growth time the data fit very well with a fp(

) - - : A | o +1
behavior. Simulations for different values indicate that, Ds™71Ds™ 1D

min

(h=aIn t/|In q, (41) Steps(1)—(4) are performed simultaneously for all of the
smallest domains in the system. Hdge is the length of

with a=2.6. The toy model enables one to verify the scalingdomaini, andl ,,,, is the length of the smallest domain. Steps
behavior(41) and estimate the constaat This would be (1)—(3) choose the smallest domai,,;, and its nearest

very difficult to do by simulation of the full modefL). neighbors(see Fig. 6. Step(4) uses the fact that the dynam-
ics occur in the model only in the vicinity of the smallest
C. Mean-field solution of the toy model domain, and eliminates the three domdg,, D1, andD,,

Here we present the solution of a mean-field version ofo'g'%g th’\TT ag]prtomlately W't? tlfgje dother .dorr:jaﬁg, D;"t K
the toy model based on ideas presented by Rutenberg afid Ps- Note that this mean-nield dynamics does not take
Bray [27] and Bray, Derrida, and Godree[28] in the study

Ds Dj D1 Dmin D, D4

of the ordering dynamics in a one-dimensional scalar model. - " ey e -
To construct the mean-field model we note that since all ~ B

steps in the toy model which involve exchange of particles FIG. 6. A configuration in the mean-field model after stéps-
between domains occur at a rate exponentially small in thé3) have been performed for one of the smallest domains.
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into account the time taken for these events to happen. Thisorrelation function, is usually obtained by performing a

will be done later when we derive the growth law of do-
mains.

trace over the product of matrices, or by multiplying both
sides of the product of matrices by vectors. Generalizing this

To solve the mean-field model we follow the method usedmethod to replace matrices by tensg28], we have been

in Refs.[27,28. Let ni(t) be the number of domains of size
[, irrespective of the type of particle it consists of. Lgt,(t)
be the length of the smallest domain, akidt) =3K(t) be
the total number of domains at tinte We will assume that
n,(t) has the following scaling form in the large-time limit:

il
=—f|l—].
Imin Imin

A solution of the model given in Appendix A yieldd)
=(X)I min, Where(x) is given by

n (43

3ey/3

J dx x Y3 Xe (03
0

(x)= (44)

The growth law for ,;,(t) can be derived following Ref.
[27]: after the elimination of the smallest domair,, in-
creases by 1. This happens at a raten/(l), namely, the

inverse time required by a typical domain to cross a distance

Imin (thus causing the annihilation db ;). Using (I)
= (X) min, We write
(?Imin: qlmin
gt <X>|min'

(45)

able to obtain recursion relations for the partition function
and correlation function for finite systems for the special
caseNp=Ng=N. The recursion relations are then used to
obtain the partition function and correlation functioh; A, )

for anyr in small systems. The results are used to study the
scaling of the correlation function near the critical point
=1 (infinite temperaturg where the typical domain wall
width diverges.

A. Tensor product ansatz

It is convenient to consider the unnormalized weights
fn({Xi}), defined through
Wh({Xi}) =Zy (X, (47)
whereWy({X;}) is the probability of being in configuration
{X;}. The partition sun¥y is given by

Zy=2, Tn(Xi)), (48)
{Xi}

where the sum is over all configurations witkiy=Ng
= NC .

We generalize the matrix ansatz and construct the steady-
state weightfy({X;}), from a product of tensors, each cor-

From this, one can obtain the scaling form of the averagéesponding to a particle located in a specific place on the

domain size,

<|>q*<l>/<><>

et

[In(q)]

Note that in this equatiofix) does not depend, according
to the mean-field solution, on eitheor g. One can see from
Eq. (46) that, for largel, (I)~(x)In t/[In g, which was con-
firmed by the simulations of the toy model wheaie=(x)
[see EQ.(41)]. A numerical evaluation of Eq44) yields
(x)=3.72, as compared wita=2.6 obtained from the toy
model simulations.

(46)

V. EXACT RESULTS FOR FINITE SYSTEMS

In Sec. lll, the partition functioZy, and correlation func-
tion (A;A,) for finite r have been calculated in the thermo-
dynamic limit. It is also of interest to obtain results for finite

systems for the study of finite-size effects and the approac

lattice. The contraction of the tensors yields a tensor which is

then contracted with “left” and “right” tensors to generate

a scalar. The three tensors which represent the different type
of particle are defined as rank 6 tensors through the follow-

ing tensor products of square matrices:

A=E®D®1,

B=10E®D, (49)

C=D®1®E.

Herel is a unit matrix. The matrice® andE will be chosen
in what follows to satisfy a commutation relation which will
be dictated by the detailed balance condition.

To definefy({X;}) we introduce the following notation:
the contraction of two rank 6 tenso@=0,® 0,® O3 and
P=P.®P,®P;, whereO; and P; are square matrices, ac-

to the thermodynamic limit. Recently a matrix ansatz method0rding to the ruleo,P;®0,P,® O4P3 is denoted byOP.
has been introduced to study one-dimensional nonequilib] N€ contraction of a rank 6 tens@ with a left rank 3 tensor
rium systemg21]. It has been shown that in certain three—<’C|:<K1|®<K2|®<K3|a where(K;| are transposed vectors,
species models the steady-state weight and correlation fun@nd @ right rank 3 tensofM)=|M)®@[M,)®|M3), where
tions can be represented as a product of matricefMi) are vectors, defined through

[11,5,12,22 In the ansatz a specific matrix is associated
with each type of particle. Then the unnormalized probability
of a certain configuration is obtained from a matrix product.
The matrices corresponding to the different species of paris denoted by K| O| M).

ticles satisfy an algebra derived from the dynamics of the Using these definitions, we write the steady-state weight
model. A scalar, i.e., the weight of a configuration or someof the system as

<Kl|ol| M l><K2|OZ| M 2><K3|O3| M 3>
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N For example choosing (U4 as before with |V)

fN({Xi})=(U|i=Hl [ALA+BB+CCIV), (500 —q=N’90 0,0, will shift the ground state energy to 0. In the
following the factors are taken to be 1.
whereA; , B;, andC; are the occupation variables defined in ~ Finally we would like to remark that usually when using
Eq. (2). The expression states that a tensris present at  the matrix ansatz for systems with periodic boundary condi-
placei in the tensor product if sité is occupied by arA  tions, itis often convenient to use a trace of the matrix prod-
particle, a tensoiB is present if site is occupied by &B uct[11,27. In this case this is not possible, since the trace of
particle, and a tensag is present if site is occupied by &&  our tensor product is always zero.
particle. The action of the tensor product @4 and |V)
produces the scaldg ({X;}) when(l{ and|V) are chosen to B. Partition sum
pick out a nonzero element of the tensor prodset below. - . .
It is straightforward to show using detailed balance that abivlgntg;ms of the ansat¢50), the partition functionZy is

necessary condition for EGG0) to be the steady-state weight
is that the following commutation relations are satisfied be-

tween A B, andC: Zy=(NI3,N/3,N/3|(A+B+C)N0,00. (54
gAB=BA,
qBC=CB, (51)  Note that we are using the canonical ensemble, since all
qCA=AC. tensor products with unequal number of particles do not con-

tribute toZy . This is easily seen since in these cases there

It was shown in Ref[30] that the algebraic rule©1) also are always more thail/3D matrices acting on one of the

give the steady state of the same model with reflectinq/

boundariegwhere the current is automatically zgrfor ar- ectors(N/3|.

bi " . To obtain the partition function, we derive a recursion

itrary densities. In that work the relation to quantum planesrelation for

[31] was touched upon. The algebraic ru(&4) follow im-

mediately from detailed balance and do not rely on the form

(49). Rather, Eq.(49) provides an easy way to satisfy Eq. G!'j'kz(i,j,k|(.A+ B+ C)'|0,0,0>. (55)

(51), as can be verified, provided thgDE=ED. This de-

formed commutator is of relevance in other stochastic sysOne can see thﬁm,&N,&m:ZN. Rewriting G!,j’k as

tems[32,33. A representation of matrice® and E which

satisfies this commutation relation can be obtained as fol- L -1

lows: let{(n|} denote a basis seb&0,1, . .. N/3) forming Giju=(i.] K A(A+B+C)*00,0

a vector space. In this basis we choose the matrices so that +(i,j,k|B(A+B+C)'7%0,0,0)
(nE=(n|q" for anyn, +(i,j.klc(A+B+0)'7Y0,00, (56

(n|D=(n—1| for n=1, (52 and using relation49) and (52), the following recursion

. . , relation can be derived:
while, for n=0, (0|D=0. An explicit form for E andD is

given by the following /3+1)X(N/3+ 1) square matri-

ces: G:,j,k:in!,_jEl,k"_ qu!,_j,i—ﬁ‘ qu!:i,j,k- (57)
N/3 N/3 The boundary conditions for this recursion relation is given
E=Y g nyn|, D=3 |n)(n—1|. (53 by the no particle partition functios?; =1 if i=j=k=0,
n=0 n=1 and is zero otherwise.

i - ] For small systemgup to N=21) for which the recursion
To obtainfy({X;}), (U and|V) have to be specified. This e|ation is tractable analytically ORATHEMATICA, we ob-
should obviously be done so thg{({X;}) is nonzero if the  (4ineq the partition functioly =G5 a5 @S @ polynomial
ansatz is to give a nontrivial result. We consider a generaj, q. As expected, the firdi/3— 2 terms of the polynomial
tensor product which corresponds to some configuration. Thg,otch the firsiN/3— 2 terms of the expansion of E{L4) up

product has/3 tensors of each typed, B, andC, which 0 a factor ofgN*’® due to the energy shift in the ground state.

results in a tensor product of three matrix products. Us,inq:or largerN, we solve the recursion relation numerically
Eq.(49), i h h i ' . A
d.(49), it can be seen that each matrix product contalfss We note that Eq(57) could have been derived directly

matrices of each typB, E, and1. Sincek and1 are diago- from the definition of the partition function without recourse

nal, while D acts to its left as a lowering matrpsee Eq. to the tensor ansatz Hov?/ever we believe the utility of the

(52)], choosing{U|=(N/3|®(N/3|®{N/3|=(N/3,N/3N/3|, o ' . . : Y
ansatz lies in the ease with which correlation functions can

and|))=|0,0,0 \.N'." give a nonz.erofN({Xi}). This makes .be manipulated and relations such as that of Sec. V C de-
clear that the minimal size choice for the vector spaces IS ad

N/3+ 1. Under this choice it is easy to see that in the groun

states one hatsqu’\‘z’9 which corresponds to a ground state
energyN2/9. However, the choice ofi| and()) is deter-
mined only up to some multiplicative factors. These factors The correlation functiofA.A,) is given in terms of the
may be used to shift the ground state energy of the systenansatz by

C. Correlation functions
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(N/3,N/3,N/3|. A(A+B+C)" 2A(A+B+C)N"'0,0,0

<A1Ar>: ZN (58)
Using relationg49), (51), and(52), we obtain
N/3,N/3—2,N/3|(A+qB+Clq) " 2(A+B+C)N10,0,0
Zy
U(r)} _
— 2N (NN, ni 2,N/3, (60)
Zy
|
where we define the objet‘.t(r)is,j‘k through, increases. This scaling variable was also suggested by the

form of the partition function14) in Sec. IlI C.
U(r)7 = (i.i kI(A+gB+Clq)* 2
><(.A+B+C)N_r|0,0,0>. 61) VI. GENERALIZATION TO M SPECIES
In the following we discuss possible generalization of the
A recursion relation folU(r)?; , can be obtained, similarly model toM=3 species. To demonstrate how this might be
to the recursion relation for the partition functiéB). Using ~ done, we first discuss the casé=4. We then comment

Egs.(49) and(52) gives briefly onM>4.
We now define a four-species model and argue that it
U  =qunst  +gtu(r)s;t phase separates. Consider a ring where each site is occupied
i,j,k i,j—1k ij,k—=1 . .
by either anA, B, C, or D particle. The model evolves ac-
+a (DL k- (62)  cording to the following procedure: at each time step, two

nearest neighbors are chosen randomly and exchanged ac-
The boundary conditions for the recursion relation are ob<ording to the rates
tained by noting that U(r)?; ,=(i.j.kl(A+B q
+C)N710,0,0, i.e., U(r)?,=Gi|i. Using the same AB=BA,
methods, one can obtain recursion relations for all other cor- !
relation functions.

q
The recursion relations are solved numerically for finite BCCB,
systems. This is done by first solving numerically G),'?"jfk’,
and then using the result as boundary conditions for the re- CD%DC,
cursion relation(62). Owing to Eq.(60) we are ultimately 1 63
interested inU (r)\an/a—2n3- q
Using these recursion relations we have calculated the DAZAD,
correlation function{A;A,) as a function of the distanae
for a system of siz& =84 and several values of (Fig. 7). ACiCA
X T =CA,
For smallqg this system size is large enough that the corre- 1
lation function is close to the asymptotic thermodynamic q
limit, and phase separation is clearly seen. This is less evi- DB=BD.
dent for largerg, and one has to go to largBrto see phase !
separation. As before, the model conserves the number of particles of

We also give the correlation functigi,Ay), whichisa  each species. Note that several other generalizations of the
measure of the phase separation in the system, for varioumsodel to four species are possible. However, for simplicity,
system sizes. Whe(A Ay is close to zero the system is we discuss only the model defined by E§3) with q<1.
phase separated. In the disordered cgsel, the value of We now argue that the system phase separates into a con-
the correlation function isN—3)/9(N—1), approaching figuration of the formABCD (where each letter now indi-
in the thermodynamic limit. The results are shown in thecates a domain as long as the densities of particles of each
inset of Fig. 8; one can see that the system is phase separatggkcies are nonzero. Note that in the mo#él&, BC, CD,
for small values ofg, while for q close to 1 the system is DA, AC, and DB boundaries are stable, while reverse
disordered. The range @f values for which the system is boundarieBA, CB, DC, AD, CA, andBD are unstable. As
phase separated increases as the system size increases. ifhthe case of the three-species model, the system, starting
natural scaling variable near the critical point1 isN Ing,  from a random initial condition, evolves on a short-time
and the ratio between the domain si¥é3 and the domain scale(i.e., which is not determined by the size of the system
wall width f1g'dl/fg'dl=1//In g|. In Fig. 8, the correlation into a metastable configuration where only stable domains
function is plotted as a function of the scaling variable. Oneare present. This configuration then slowly coarsens by slow
can see that the data collapse improves as the system sid#fusion of particles through neighboring domains. The sys-
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FIG. 8. The correlation functiol©=(A;Ay,), obtained from
0.00 ' ' . ' the tensor product ansatz, as a function of the scaled vai¥ibtp
20 22.0 42.0 62.0 82.0 for N=30,36,42...,84. The inset shows the same data plotted
r againstq.

FIG. 7. The correlation functiofA;A;) as a function ofr,
obtained from the tensor product ansatz fbr 84 and for several
values ofq.

plicit example of the mechanism leading to phase separation
or breaking of ergodicity in systems witlocal stochastic
dynamics. Although we did not succeed in solving the steady
o state in the case of nonequal densities of particles, there is
tem will finally reach the most stable state where the numbegtrong evidence that phase separation still occurs. In order to
of domains is minimal. One can easily check that this coninyestigate further the case of equal densities, we employed a
figuration is given byABCD. Note that the system may generalized matrix ansatz to calculate the correlation func-
exhibit other metastable states. For example, a state contion for finite-size systems. The structure of the ansatz may
posed ofACDABCDis also stable under the choice of ratesgive some clue as to how to handle other 1D models which
(63). However, since this state is composed of more domainkave so far resisted solution.

than the four-domain state, some of the domains are neces- The dynamics of phase separation reduces to a coarsening
sarily smaller. According to the argument presented in Seqgroblem, where the typical domain size grows logarithmi-
Il, the relaxation time of this sequenégroportional tog™™  cally in time. This results from the elimination of the do-
wherem is the typical domain si2dés much shorter than the mains at a rate exponentially small in their size. The slow
relaxation time of the four-domain state. Therefore, the fourdynamics poses a problem of how to access the scaling re-
domain state is more stable so that the system will finallygime numerically. With direct numerical simulations, only
evolve into it. small systems can be studiésee Fig. 3 However, by em-

In consideringM >4 models, one finds that for some ploying a toy model in which domains rather than individual
choices of transition rates several states with a minimunsites are updated, one can simulate much larger systems and
number of domains may become metastable. For exampl@robe the scaling regimesee Fig. $. Such ideas of updating
for M=5 it is possible to choose transition rates for whichdomains have been used before in the study of coarsening
both ABCDE and ACEBD are locally stable. The relative [34]. With the aid of the toy model it should be possible to
stability (and thus the resulting phase separatedstasy be  study other aspects of the scaling regime associated with the
found by determining the relaxation time of these states usslow dynamics and escape from metastable states.
ing simple considerations such as those presented in Sec. Il. Generalizations are possible to models with>3 spe-

As is the case oM =3, detailed balance is found to be cies. We have discussed some possibilities, and have shown
satisfied for certain densities and transition ratesMor3.  that phase separation may take place, although the structure
The condition for this is derived in Appendix B. In this case of the set of metastable states is more complicated. As was
the relative stability of metastable states could be determinethe case folM =3, conditions for detailed balance with re-
by comparing free energies. spect to a long-range Hamiltonian may be determined.

The problem of phase separation and coarsening also is of
interest in the broader context of phase transitions in one-
VIl. CONCLUSION dimensional systems. Here the existence of conserved quan-
tities results in certain local transition rates being zero. It
ing on a ring previously introduced in R&f5] has been Wo_uld be interesting to generali;e this study to models in
hwh|ch no conserved quantity exists and all local rates are

studied. The model is governed by local dynamics in whic . .
all moves compatible with the conservation of the three denponvamshmg. Also, another open problem is to calculate the

sities are allowed. We argue that phase separation Shoug!ead_y state of the present model in the case of nonequal
occur as long as all densities are nonzero. In the special ca gnsities.

of equal densities we find that the steady state generated by
the local stochastic dynamics is exactly given by a long-
range asymmetric Hamiltonian. Phase separation for this M.R.E. thanks the Weizmann Institute and the Einstein
case is explicitly demonstrated. The model provides an ex€enter for their warm hospitality during several visits and

In this paper a model of three species of particles diffus
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3p2ee (P fwdx X Y3a—xg— 10013
APPENDIX A: MEAN-FIELD SOLUTION OF TOY MODEL p

To solve the mean-field model, we follow the methOdwherel(x)=f°1°dt ex —xtl/t=—In(x)— y—S7_,(—X)"(nin),

used in Refs[27,28. Letn(t) be the number of domains of 4. is the Euler constant. Inverse Laplace transform of Eq.
sizel, irrespective of the type of particle it consists of. Let (A9) gives the domain size distribution. From E&9), and

[min(t) be the length of the smallest domain amndi(t) using the expansio =1—(x)p+- - -. where the aver-
=3K(t) be the total number of domains at tirheWe will age ?s with rgspect?d)(&)) we E)b>tgin '

assume than,(t) has the following scaling form in the large-
time limit: 3
3e”

X)=— (A10)
nlzﬂf(l_)_ (Al) f dx X—l/Se—xe—I(x)/3

Imin Imin 0

After the elimination of the smallest domain as given by Eqg.

(42), 0y, 1 i, andM change according to APPENDIX B: DETAILED BALANCE CONDITION

FOR AN M-SPECIES MODEL

M'=M —3n (A2) We now define the most genefdl species model, where
M=3. Let X; denote a variable at siieof a ring of sizeN,

n_ i which takes valueX;=1,2, ... M. X;=m means that sité
nj=n)|1-5 | T 0= 2hin) is occupied by a particle of typm. The system evolves by a
random sequential, nearest-neighbor exchange dynamics,
1= min nj i with the rates
+2n|minj:| . MV, (A3)
min g(m,n)
' mn =2 nm, Bl
min~ lmint 1. (A4) q(n,m) (B1)
Using the scaling forntAl), we have andq(X;,X;)=1. The model conserves,,, the number of
particles of typem, for all m.
. M’ | We now present a condition for the model to satisfy de-
n _|min+1f lint 1 tailed balance with respect to the steady-state weight given
by
f(x) X
=~ f0=@I )+ Dy —=7—af(x)]| (A N-1 N
min| min min
wixip=11 II acx; ., (B2
wherex=1/l;, and we have expanded inl}f,. Now sub- IR
stituting these into Eq(A3), it is straightforward to show ) ) ) ) .
that where the sefX;} describes the microscopic configuration.
Consider a particle exchange between skeand k+ 1,
f(X) + X, (X) = 2F(x) (1) + F(1)f(x—1) B(x—2) whereX,=m, X,.;=n andk#N (i.e., in the bulk, note that

site 1 is chosen arbitrarily Expanding the product in Eq.

+26(x—2)f(1)f dy f(y)f(x—y)=0. (A6) (B2), it is easy to verify that
1
W(Xq, ....mn, ... Xy) q(n,m)
; = . (B3)
Using the Laplace transform, W(Xq, ....nm, ... Xy  q(mn)
i _ Since this holds for anyn andn, and is irrespective of the
=|d f(x), A7 ; ) .
#(p) L x ex —px]f(x) (AD) number of particles of each species, the steady-state weight

(B2) satisfies detailed balance for all nearest-neighbor ex-
one can show thap(p) satisfies the differential equation, changes in the bulk. If the weight®2) are translationally
invariant then detailed balance will also hold for exchanges
Pipp(P)=T(1)[H(p)—1][24(p)+e P].  (A8)  between sites 1 an.
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Thus, to complete the proof of detailed balance it is suf-Comparing Egs(B5) and (B2), and noting, for example,
ficient to demand that EqB2) is translationally invariant. that,
To do this, we relabel sites—i+1. The weight then be-

N M
comes [T ax; X =11 [a(, X1, (B6)
N—-1 N j=1 =1
wixh=1I1 TI aXj-1.%i-1), (B4  one can see that EB2) is translational invariant if
=1 j=i+1
| = [a(m M
whereXg is identical toXy. Rewriting this equation by re- [q(l r’n) = (B7)
|:l )

labeling the indices, we obtain

N-1 N N-1 for everym=1, ... M. Thus detailed balance holds if Eq.
WX} = H H (X, %) H Q(XK’XN)_ (B7)'is satisfied..We note that for .given densitimm} the
=1 j=it1 k=1 q(Xn,Xg) manifold of solutions for the rates is & (M —3)/2 dimen-
(B5) sions.
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